[1] PENG T, SU L, ZHANG R, et al. A new safe lane change trajectory model and collision avoidance control method for automatic driving vehicles[J]. Expert Systems with Applications, 2020, 141: 112953.
[2] YAMADA M, UEDA K, HORIBA I, et al. Discrimination of the road condition toward understanding of vehicle driving environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 2(1): 26-31.
[3] TONG W, CHEN W, HAN W, et al. Channel-attention based DenseNet network for remote sensing image scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4121-4132.
[4] JING C, HUANG L, CAI S, et al. Interclass similarity transfer for imbalanced aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
[5] LATTE M V, SHIDNAL S, ANAMI B, et al. A combined color and texture features based methodology for recognition of crop field image[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8(2): 287-302.
[6] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. [2024-01-21]. https://arxiv.org/abs/1412.7062.
[7] ZHAO W, DU S. Scene classification using multi-scale deeply described visual words[J]. International Journal of Remote Sensing, 2016, 37(17): 4119-4131.
[8] LIU Y, ZHONG Y, QIN Q. Scene classification based on multiscale convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7109-7121.
[9] 张睿, 杨义鑫, 李阳, 等. 自监督学习下小样本遥感图像场景分类[J]. 中国图象图形学报, 2022, 27(11): 3371-3381.
ZHANG R, YANG Y X, LI Y, et al. Self-supervised learning based few-shot remote sensing scene image classification[J]. Journal of Image and Graphics, 2022, 27(11): 3371-3381.
[10] 邬满, 文莉莉, 孙苗. 注意力机制海洋场景图像理解算法[J]. 计算机工程与应用, 2022, 58(10): 231-239.
WU M, WEN L L, SUN M. Attention mechanism image understanding algorithm of ocean scene[J]. Computer Engineering and Applications, 2022, 58(10): 231-239.
[11] 王光, 陶燕, 沈慧芳, 等. 基于多特征融合与CELM的场景分类算法[J]. 计算机工程与应用, 2022, 58(1): 232-240.
WANG G, TAO Y, SHEN H F, et al. Multi-feature fusion and constrained extreme learning machine for scene classification[J]. Computer Engineering and Applications, 2022, 58(1): 232-240.
[12] 杜鹏, 张有明, 朱郑州, 等. 迁移学习在低资源场景实体识别中的应用研究[J]. 计算机科学与探索, 2023, 17(4): 912-921.
DU P, ZHANG Y M, ZHU Z Z, et al. Study on application of transfer learning in entity recognition of low resource environment[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 912-921.
[13] 张多纳, 赵宏佳, 鲁远耀, 等. 融入注意力机制的小样本遥感图像场景分类[J]. 计算机工程与应用, 2024, 60(4): 173-182.
ZHANG D N, ZHAO H J, LU Y Y, et al. Few-shot scene classification with attention mechanism in remote sensing[J]. Computer Engineering and Applications, 2024, 60(4): 173-182.
[14] CHEN L, ZHAN W, TIAN W, et al. Deep integration: a multi-label architecture for road scene recognition[J]. IEEE Transactions on Image Processing, 2019, 28(10): 4883-4898.
[15] ZHENG K, NAJI H A H. Road scene segmentation based on deep learning[J]. IEEE Access, 2020, 8: 140964-140971.
[16] CHEN W, OUYANG S, TONG W, et al. GCSANet: a global context spatial attention deep learning network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1150-1162.
[17] SAFFARI M, KHODAYAR M, JALALI S M J. Sparse adversarial unsupervised domain adaptation with deep dictionary learning for traffic scene classification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(4): 1139-1150.
[18] YU F, CHEN H, WANG X, et al. BDD100k: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2636-2645.
[19] SHEN C, ZHAO X, FAN X, et al. Multi-receptive field graph convolutional neural networks for pedestrian detection[J]. IET Intelligent Transport Systems, 2019, 13(9): 1319-1328.
[20] XU H, SRIVASTAVA G. Automatic recognition algorithm of traffic signs based on convolution neural network[J]. Multimedia Tools and Applications, 2020, 79(17/18): 11551-11565.
[21] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2005: 886-893.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[23] YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 472-480.
[24] NAMBURU A, SELVARAJ P, MOHAN S, et al. Forest fire identification in UAV imagery using X-MobileNet[J]. Electronics, 2023, 12(3): 733.
[25] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 1251-1258.
[26] CHANG H S, LEARNED-MILLER E, MCCALLUM A. Active bias: training more accurate neural networks by emphasizing high variance samples[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1002-1012.
[27] 张德, 李国璋, 王怀光, 等. 位姿估计自适应学习率的改进[J]. 电子测量与仪器学报, 2019, 33(6): 51-58.
ZHANG D, LI G Z, WANG H G, et al. Improved adaptive learning rate of pose estimation[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(6): 51-58.
[28] WANG W, HU Y, ZOU T, et al. A new image classification approach via improved MobileNet models with local receptive field expansion in shallow layers[J]. Computational Intelligence and Neuroscience, 2020. DOI: 10.1155/2020/8817849.
[29] LIU S, TIAN G, XU Y. A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter[J]. Neurocomputing, 2019, 338: 191-206.
[30] HUANG X, YANG R, WANG Q, et al. A novel method for real-time ATR system of AUV based on Attention-MobileNet-V3 network and pixel correction algorithm[J]. Ocean Engineering, 2023, 270: 113403.
[31] PENG C, LIU Y, YUAN X, et al. Research of image recognition method based on enhanced inception-ResNet-V2[J]. Multimedia Tools and Applications, 2022, 81(24): 34345-34365.
[32] ALHICHRI H, ALSWAYED A S, BAZI Y, et al. Classification of remote sensing images using EfficientNet-B3 CNN model with attention[J]. IEEE Access, 2021, 9: 14078-14094.
[33] RATEKE T, JUSTEN K A, VON WANGENHEIM A. Road surface classification with images captured from low cost camera-road traversing knowledge (RTK) dataset[J]. Revista de Informática Teórica e Aplicada, 2019, 26(3): 50-64.
[34] MYLAVARAPU S, SANDHU M, VIJAYAN P, et al. Understanding dynamic scenes using graph convolution networks[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 8279-8286. |