
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (5): 1177-1197.DOI: 10.3778/j.issn.1673-9418.2407029
• Frontiers·Surveys • Previous Articles Next Articles
YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu
Online:2025-05-01
Published:2025-04-28
杨智勇,郭洁铷,郭子杭,张瑞祥,周瑜
YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197.
杨智勇, 郭洁铷, 郭子杭, 张瑞祥, 周瑜. 道路行人行为轨迹预测研究综述[J]. 计算机科学与探索, 2025, 19(5): 1177-1197.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2407029
| [1] YIN H L, WEN Y R, LI J X. A survey of vehicle trajectory prediction based on deep-learning[C]//Proceedings of the 2023 3rd International Conference on Neural Networks, Information and Communication Engineering. Piscataway: IEEE, 2023: 140-144. [2] YANG D F, MAROLI J M, LI L H, et al. Crowd motion detection and prediction for transportation efficiency in shared spaces[C]//Proceedings of the 2018 IEEE International Science of Smart City Operations and Platforms Engineering in Partnership with Global City Teams Challenge. Piscataway: IEEE, 2018: 1-6. [3] RINKE N, SCHIERMEYER C, PASCUCCI F, et al. A multi-layer social force approach to model interactions in shared spaces using collision prediction[J]. Transportation Research Procedia, 2017, 25: 1249-1267. [4] 陈龙, 杨晨, 蔡英凤, 等. 基于多模态特征融合的行人穿越意图预测方法[J]. 汽车工程, 2023, 45(10): 1779-1790. CHEN L, YANG C, CAI Y F, et al. Pedestrian crossing intention prediction method based on multimodal feature fusion[J]. Automotive Engineering, 2023, 45(10): 1779-1790. [5] MA Y X, ZHU X G, ZHANG S B, et al. TrafficPredict: trajectory prediction for heterogeneous traffic-agents[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6120-6127. [6] 杨智勇, 郭洁铷, 郭子杭, 等. 基于多特征交互融合的行人过街意图预测[J/OL]. 计算机工程与应用 [2024-11-25]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241122. 1008.006.html. YANG Z Y, GUO J R, GUO Z H, et al. Pedestrian crossing intention prediction based on multi-feature interaction fusion[J/OL]. Computer Engineering and Applications [2024-11-25]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241122.1008. 006.html. [7] YANG B, WEI Z W, HU H Y, et al. DPCIAN: a novel dual-channel pedestrian crossing intention anticipation network[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 6023-6034. [8] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. [9] MEN Q H, SHUM H P H. PyTorch-based implementation of label-aware graph representation for multi-class trajectory prediction[J]. Software Impacts, 2022, 11: 100201. [10] LIANG X D, HU Z T, ZHANG H, et al. Recurrent topic-transition GAN for visual paragraph generation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3382-3391. [11] 石洋宇, 左景, 谢承杰, 等. 多尺度融合与FMB改进的YOLOv8异常行为检测方法[J]. 计算机工程与应用, 2024, 60(9): 101-110. SHI Y Y, ZUO J, XIE C J, et al. Improved YOLOv8 method for anomaly behavior detection with multi-scale fusion and FMB[J]. Computer Engineering and Applications, 2024, 60(9): 101-110. [12] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177. HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177. [13] VIVACQUA R P D, BERTOZZI M, CERRI P, et al. Self-localization based on visual lane marking maps: an accurate low-cost approach for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 582-597. [14] GROLLIUS S, LIGGES M, RUSKOWSKI J, et al. Concept of an automotive LiDAR target simulator for direct time-of-flight LiDAR[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 825-835. [15] SRIVASTAVA A K, SINGHAL A, SHARMA A. Analysis of lidar-based autonomous vehicle detection technologies for recognizing objects[C]//Proceedings of the 2023 6th International Conference on Information Systems and Computer Networks. Piscataway: IEEE, 2023: 1-5. [16] YAO Y, ATKINS E, JOHNSON-ROBERSON M, et al. BiTraP: bi-directional pedestrian trajectory prediction with multi-modal goal estimation[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1463-1470. [17] GILLES T, SABATINI S, TSISHKOU D, et al. GOHOME: graph-oriented heatmap output for future motion estimation[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 9107-9114. [18] POIBRENSKI A, KLUSCH M, VOZNIAK I, et al. M2P3: multimodal multi-pedestrian path prediction by self-driving cars with egocentric vision[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York: ACM, 2020: 190-197. [19] GHORI O, MACKOWIAK R, BAUTISTA M, et al. Learning to forecast pedestrian intention from pose dynamics[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 1277-1284. [20] MALLA S, DARIUSH B, CHOI C. TITAN: future forecast using action priors[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11186-11196. [21] LIU M M, CHENG H, CHEN L, et al. LAformer: trajectory prediction for autonomous driving with lane-aware scene constraints[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 2039-2049. [22] 刘桂红, 周宗润, 孟祥福. 基于Transformer和多关系图卷积网络的行人轨迹预测[J]. 计算机科学与探索, 2025, 19(5): 1353-1364. LIU G H, ZHOU Z R, MENG X F. Pedestrian trajectory prediction based on Transformers and multi-relation graph convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364. [23] 何佳旭, 陈金立, 李爱庆, 等. 基于Transformer-LSTM模型的毫米波雷达行人轨迹预测方法[J]. 中国电子科学研究院学报, 2023, 18(6): 513-520. HE J X, CHEN J L, LI A Q, et al. Pedestrian trajectory prediction method for millimeter wave radar based on Transformer-LSTM model[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(6): 513-520. [24] MUDULI K, SAHU V, GHOSH I. Predicting pedestrian movement in unsignalized crossings: a contextual cue-based approach[C]//Proceedings of the 2024 16th International Conference on Communication Systems & Networks. Piscataway: IEEE, 2024: 204-209. [25] GUO J, LV P F, LI D Y. A motion logic network for pedestrian motion prediction[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 2531-2537. [26] ZHAO L, ZHOU H, ZHU X G, et al. LIF-Seg: LiDAR and camera image fusion for 3D LiDAR semantic segmentation[J]. IEEE Transactions on Multimedia, 2023, 26: 1158-1168. [27] 姚杰, 操星, 平红, 等. STMS: 一种基于时空注意力机制的行人轨迹预测模型[J/OL]. 云南民族大学学报(自然科学版) [2024-07-31]. http://kns.cnki.net/kcms/detail/53.1192.N.20240708.1101.002.html. YAO J, CAO X, PING H, et al. STMS: a pedestrian trajectory prediction model based on spatio-temporal attention mechanism[J/OL]. Journal of Yunnan University for Nationalities (Natural Science Edition) [2024-07-31]. http://kns.cnki.net/kcms/detail/53.1192.N.20240708.1101.002.html. [28] ALVAREZ W M, MORENO F M, SIPELE O, et al. Autonomous driving: framework for pedestrian intention estimation in a real world scenario[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 39-44. [29] PHAN-MINH T, GRIGORE E C, BOULTON F A, et al. CoverNet: multimodal behavior prediction using trajectory sets[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14074-14083. [30] RASOULI A, YAU T, ROHANI M, et al. Multi-modal hybrid architecture for pedestrian action prediction[C]//Proceedings of the 2022 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2022: 91-97. [31] VARYTIMIDIS D, ALONSO-FERNANDEZ F, DURAN B, et al. Action and intention recognition of pedestrians in urban traffic[C]//Proceedings of the 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems. Piscataway: IEEE, 2018: 676-682. [32] XU Y R, YANG X Y, GONG L H, et al. Explainable object-induced action decision for autonomous vehicles[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9523-9532. [33] WANG T J, WU J P, ZHENG P J, et al. Study of pedestrians?? gap acceptance behavior when they jaywalk outside crossing facilities[C]//Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2010: 1295-1300. [34] YANG Z, GUO Z, ZHANG R, et al. FHPE-Net: pedestrian intention prediction using fusion with head pose estimation based on RNN[J]. Information Technology and Control, 2024, 53(3): 899-915. [35] CAO D, FU Y B. Using graph convolutional networks skeleton-based pedestrian intention estimation models for trajectory prediction[J]. Journal of Physics: Conference Series, 2020, 1621(1): 012047. [36] ROBICQUET A, SADEGHIAN A, ALAHI A, et al. Learning social etiquette: human trajectory understanding in crowded scenes[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 549-565. [37] KABTOUL M, SPALANZANI A, MARTINET P. Towards proactive navigation: a pedestrian-vehicle cooperation based behavioral model[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 6958-6964. [38] NICOLAS A, HASSAN F H. Social groups in pedestrian crowds: review of their influence on the dynamics and their modelling[J]. Transportmetrica A: Transport Science, 2023, 19(1): 1970651. [39] ZHAI X Q, HUANG H L, SZE N N, et al. Diagnostic analysis of the effects of weather condition on pedestrian crash severity[J]. Accident Analysis & Prevention, 2019, 122: 318-324. [40] RUDENKO A, PALMIERI L, HERMAN M, et al. Human motion trajectory prediction: a survey[J]. The International Journal of Robotics Research, 2020, 39(8): 895-935. [41] ZHANG W C, CHENG H, JOHORA F T, et al. ForceFormer: exploring social force and transformer for pedestrian trajectory prediction[C]//Proceedings of the 2023 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2023: 1-7. [42] JOHORA F T, MüLLER J P. Modeling interactions of multimodal road users in shared spaces[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 3568-3574. [43] ZHAO C Y, CHU D F, DENG Z J, et al. Human-like decision making for autonomous driving with social skills[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 12269-12284. [44] SHAN S F, SHAO J J, ZHANG H J, et al. Research and validation of self-driving path planning algorithm based on optimized A*-artificial potential field method[J]. IEEE Sensors Journal, 2024, 24(15): 24708-24722. [45] ZHANABATYROVA A, SOUZA LEITE C F, XIAO Y. Automatic map update using dashcam videos[J]. IEEE Internet of Things Journal, 2023, 10(13): 11825-11843. [46] 杨智勇, 胡耀文, 许沁欣. 智能网联汽车边缘计算任务卸载研究综述[J]. 重庆交通大学学报(自然科学版), 2024, 43(12): 98-110. YANG Z Y, HU Y W, XU Q X. Research review on task offloading of edge computing for intelligent connected vehicles[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(12): 98-110. [47] KORBMACHER R, TORDEUX A. Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24126-24144. [48] ZHANG S L, ABDEL-ATY M, WU Y N, et al. Pedestrian crossing intention prediction at red-light using pose estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 2331-2339. [49] SUN L F, ZHAN W, WANG D, et al. Interactive prediction for multiple, heterogeneous traffic participants with multi-agent hybrid dynamic Bayesian network[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 1025-1031. [50] ANDERSON C, VASUDEVAN R, JOHNSON-ROBERSON M. Off the beaten sidewalk: pedestrian prediction in shared spaces for autonomous vehicles[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6892-6899. [51] YANG B, ZHU J R, HU C, et al. Faster pedestrian crossing intention prediction based on efficient fusion of diverse intention influencing factors[J]. IEEE Transactions on Transportation Electrification, 2024, 10(4): 9071-9087. [52] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 961-971. [53] TRAUTMAN P, KRAUSE A. Unfreezing the robot: navigation in dense, interacting crowds[C]//Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2010: 797-803. [54] ELLIS D, SOMMERLADE E, REID I. Modelling pedestrian trajectory patterns with Gaussian processes[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 1229-1234. [55] KIM K, LEE D, ESSA I. Gaussian process regression flow for analysis of motion trajectories[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 1164-1171. [56] FERGUSON S, LUDERS B, GRANDE R C, et al. Real-time predictive modeling and robust avoidance of pedestrians with uncertain, changing intentions[C]//Algorithmic Foundations of Robotics XI: Selected Contributions of the 7th International Workshop on the Algorithmic Foundations of Robotics. Cham: Springer, 2015: 161-177. [57] BENNEWITZ M, BURGARD W, CIELNIAK G, et al. Learning motion patterns of people for compliant robot motion[J]. The International Journal of Robotics Research, 2005, 24(1): 31-48. [58] CHEN Y F, EVERETT M, LIU M, et al. Socially aware motion planning with deep reinforcement learning[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2017: 1343-1350. [59] TANG Y J, HE H W, WANG Y, et al. Using a diffusion model for pedestrian trajectory prediction in semi-open autonomous driving environments[J]. IEEE Sensors Journal, 2024, 24(10): 17208-17218. [60] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 10335-10342. [61] ZHOU Z, HUANG G, SU Z X, et al. Dynamic attention-based CVAE-GAN for pedestrian trajectory prediction[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 704-711. [62] IVANOVIC B, LEUNG K, SCHMERLING E, et al. Multimodal deep generative models for trajectory prediction: a conditional variational autoencoder approach[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 295-302. [63] RIDEL D A, DEO N, WOLF D, et al. Understanding pedestrian-vehicle interactions with vehicle mounted vision: an LSTM model and empirical analysis[C]//Proceedings of the 2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 913-918. [64] RASOULI A, ROHANI M, LUO J. Bifold and semantic reasoning for pedestrian behavior prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15580-15590. [65] YANG C L, PEI Z. Long-short term spatio-temporal aggregation for trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4114-4126. [66] ZHANG C, NI Z J, BERGER C. Spatial-temporal-spectral LSTM: a transferable model for pedestrian trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2836-2849. [67] RASOULI A, KOTSERUBA I, TSOTSOS J K. Pedestrian action anticipation using contextual feature fusion in stacked RNNs[EB/OL]. [2024-05-27]. https://arxiv.org/abs/2005. 06582. [68] ARCHANA M, VIJI R, GANAPATHY S. A CNN-GRU based hybrid approach for pedestrian trajectory prediction[C]//Proceedings of the 2024 10th International Conference on Communication and Signal Processing. Piscataway: IEEE, 2024: 1611-1616. [69] LORENZO J, PARRA I, WIRTH F, et al. RNN-based pedestrian crossing prediction using activity and pose-related features[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 1801-1806. [70] WANG X S, BAI W, MENG Z K, et al. The prediction of flow in railway station based on RRC-STGCN[J]. IEEE Access, 2023, 11: 131128-131139. [71] HOY M, TU Z G, DANG K, et al. Learning to predict pedestrian intention via variational tracking networks[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 3132-3137. [72] MANGALAM K, ADELI E, LEE K H, et al. Disentangling human dynamics for pedestrian locomotion forecasting with noisy supervision[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2784-2793. [73] KUMAR R V B S P, SRINIVAS K, AMUDHA J. Autonomous vehicle along with surrounding agent??s path prediction using CNN-based models[C]//Proceedings of the 2023 International Conference on Computing, Communication, and Intelligent Systems. Piscataway: IEEE, 2023: 39-45. [74] ZHANG C, BERGER C. Learning the pedestrian-vehicle interaction for pedestrian trajectory prediction[C]//Proceedings of the 2022 8th International Conference on Control, Automation and Robotics. Piscataway: IEEE, 2022: 230-236. [75] RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6262-6271. [76] ZAMBONI S, KEFATO Z T, GIRDZIJAUSKAS S, et al. Pedestrian trajectory prediction with convolutional neural networks[J]. Pattern Recognition, 2022, 121: 108252. [77] ZHANG X X, ZHANG W W, WU X C, et al. Probabilistic trajectory prediction of heterogeneous traffic agents based on layered spatio-temporal graph[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(9): 2413-2424. [78] BHATTACHARYYA A, FRITZ M, SCHIELE B. Long-term on-board prediction of pedestrians in traffic scenes[C]//Proceedings of the 1st Conference on Robot Learning, 2017. [79] LI J C, MA H B, ZHANG Z H, et al. Spatio-temporal graph dual-attention network for multi-agent prediction and trac-king[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10556-10569. [80] 杨智勇, 杨俊, 许沁欣. 基于时空特征融合与候选策略的智能汽车多模态轨迹预测[J/OL]. 计算机工程与应用[2024-07-31]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20240626.1502.017.html. YANG Z Y, YANG J, XU Q X. Multimodal trajectory prediction for intelligent vehicles based on spatio-temporal feature fusion and candidate strategies[J/OL]. Computer Engineering and Applications [2024-07-31]. http://kns. cnki.net/kcms/detail/11.2127.TP.20240626.1502.017.html. [81] RAINBOW B A, MEN Q H, SHUM H P H. Semantics-STGCNN: a semantics-guided spatial-temporal graph convolutional network for multi-class trajectory prediction[C]// Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2021: 2959-2966. [82] LIU B B, ADELI E, CAO Z J, et al. Spatiotemporal relationship reasoning for pedestrian intent prediction[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3485-3492. [83] HUANG L, ZHUANG J H, CHENG X M, et al. STI-GAN: multimodal pedestrian trajectory prediction using spatiotemporal interactions and a generative adversarial network[J]. IEEE Access, 2021, 9: 50846-50856. [84] LV P, WANG W T, WANG Y X, et al. SSAGCN: social soft attention graph convolution network for pedestrian trajectory prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(9): 11989-12003. [85] LIAN J, REN W W, LI L H, et al. PTP-STGCN: pedestrian trajectory prediction based on a spatio-temporal graph convolutional neural network[J]. Applied Intelligence, 2023, 53(3): 2862-2878. [86] 陈浩东, 纪庆革. 用于行人轨迹预测的场景限制时空图卷积网络[J]. 中国图象图形学报, 2023, 28(10): 3163-3175. CHEN H D, JI Q G. Scene-constrained spatial-temporal graph convolutional network for pedestrian trajectory prediction[J]. Journal of Image and Graphics, 2023, 28(10): 3163-3175. [87] YU C F, WANG M. Pedestrian trajectory prediction based on multi-head self-attention and sparse graph convolution[C]//Proceedings of the 2024 4th International Conference on Neural Networks, Information and Communication Engineering. Piscataway: IEEE, 2024: 1723-1729. [88] LING Y C, MA Z L, ZHANG Q, et al. PedAST-GCN: fast pedestrian crossing intention prediction using spatial-temporal attention graph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 13277-13290. [89] CADENA P R G, QIAN Y Q, WANG C X, et al. Pedestrian graph: a fast pedestrian crossing prediction model based on graph convolutional networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21050-21061. [90] SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 683-700. [91] 宋雨, 王帮海, 曹钢钢. 结合数据增强与特征融合的跨模态行人重识别[J]. 计算机工程与应用, 2024, 60(4): 133-141. SONG Y, WANG B H, CAO G G. Cross-modality person re-identification combined with data augmentation and feature fusion[J]. Computer Engineering and Applications, 2024, 60(4): 133-141. [92] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264. [93] SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1349-1358. [94] AMIRIAN J, HAYET J B, PETTRé J. Social ways: lear-ning multi-modal distributions of pedestrian trajectories with GANs[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2964-2972. [95] KOSARAJU V, SADEGHIAN A, MARTíN-MARTíN R, et al. Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks[EB/OL]. [2024-05-27]. https://arxiv.org/abs/1907.03395. [96] LV Z Z, HUANG X C, CAO W G. An improved GAN with transformers for pedestrian trajectory prediction models[J]. International Journal of Intelligent Systems, 2022, 37(8): 4417-4436. [97] LAI W C, XIA Z X, LIN H S, et al. Trajectory prediction in heterogeneous environment via attended ecology embedding[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 202-210. [98] ZHOU H, MA R, ZHANG L X, et al. SAC-GAN: structure-aware image composition[J]. IEEE Transactions on Visua-lization and Computer Graphics, 2024, 30(7): 3151-3165. [99] XIE J J, ZHANG S, XIA B H, et al. Pedestrian trajectory prediction based on social interactions learning with random weights[J]. IEEE Transactions on Multimedia, 2024, 26: 7503-7515. [100] GU T P, CHEN G Y, LI J L, et al. Stochastic trajectory prediction via motion indeterminacy diffusion[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17092-17101. [101] WANG C H, WANG Y C, XU M Z, et al. Stepwise goal-driven networks for trajectory prediction[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716-2723. [102] RATLIFF N D, BAGNELL J A, ZINKEVICH M A. (Online) subgradient methods for structured prediction[J]. Journal of Machine Learning Research, 2007, 2: 380-387. [103] HERMAN M, FISCHER V, GINDELE T, et al. Inverse reinforcement learning of behavioral models for online-adapting navigation strategies[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2015: 3215-3222. [104] KRETZSCHMAR H, SPIES M, SPRUNK C, et al. Socially compliant mobile robot navigation via inverse reinforcement learning[J]. The International Journal of Robotics Research, 2016, 35(11): 1289-1307. [105] 胡伟超, 杨镇铭, 于鹏程, 等. 基于深度强化学习的自动驾驶车辆与行人交互建模[J/OL]. 吉林大学学报(工学版)[2024-07-31]. https://doi.org/10.13229/j.cnki.jdxbgxb. 20240017. HU W C, YANG Z M, YU P C, et al. Interaction modeling of autonomous vehicles and pedestrians based on deep reinforcement learning[J/OL]. Journal of Jilin University(Engineering Science) [2024-07-31]. https://doi.org/10. 13229/j.cnki.jdxbgxb.20240017. [106] KITANI K M, ZIEBART B D, BAGNELL J A, et al. Activity forecasting[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 201-214. [107] WULFMEIER M, WANG D Z, POSNER I. Watch this: scalable cost-function learning for path planning in urban environments[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2016: 2089-2095. [108] NASERNEJAD P, SAYED T, ALSALEH R. Modeling pedestrian behavior in pedestrian-vehicle near misses: a continuous Gaussian process inverse reinforcement learning (GP-IRL) approach[J]. Accident Analysis & Prevention, 2021, 161: 106355. [109] NASERNEJAD P, SAYED T, ALSALEH R. Multiagent modeling of pedestrian-vehicle conflicts using adversarial inverse reinforcement learning[J]. Transportmetrica A: Transport Science, 2023, 19(3): 2061081. [110] RASOULI A, KOTSERUBA I, TSOTSOS J K. Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 206-213. [111] ZHU J F, LIAN Z C, JIANG Z K. A spatio-temporal graph transformer network for multi-pedestrain trajectory prediction[C]//Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress. Piscataway: IEEE, 2022: 1-5. |
| [1] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [2] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [3] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| [4] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| [5] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [6] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [7] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
| [8] | WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140. |
| [9] | LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo. Review of Deep Learning Applications in Unmanned Aerial Vehicle Remote Sensing Images of Grass Plants [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1157-1176. |
| [10] | LIU Guihong, ZHOU Zongrun, MENG Xiangfu. Pedestrian Trajectory Prediction Based on Transformer and Multi-relation Graph Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364. |
| [11] | LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin. Dual Graph Attention Model for Multivariate Time Series Anomaly Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064. |
| [12] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [13] | LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao. Overview of Applications and Research Directions of Deep Learning Methods for Wind Power Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 602-622. |
| [14] | MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581. |
| [15] | MENG Xiangfu, SHI Guangqi, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Deep Learning Based Trajectory Similarity Measurement Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 623-644. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/