Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (7): 1683-1704.DOI: 10.3778/j.issn.1673-9418.2310043
• Frontiers·Surveys • Previous Articles Next Articles
HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia
Online:
2024-07-01
Published:
2024-06-28
韩涵,黄训华,常慧慧,樊好义,陈鹏,陈姞伽
HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704.
韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2310043
[1] MURAT F, YILDIRIM O, TALO M, et al. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review[J]. Computers in Biology and Medicine, 2020, 120: 103726. [2] CHEN S W, WANG S L, QI X Z, et al. Review of ECG detection and classification based on deep learning: coherent taxonomy, motivation, open challenges and recommendations[J]. Biomedical Signal Processing and Control, 2022, 74: 103493. [3] SERHANI M A, EL KASSABI H T, ISMAIL H, et al. ECG monitoring systems: review, architecture, processes, and key challenges[J]. Sensors, 2020, 20(6): 1796. [4] LIU X, WANG H, LI Z, et al. Deep learning in ECG diagnosis: a review[J]. Knowledge-Based Systems, 2021, 227: 107187. [5] KAMATH G S, COTIGA D, KONERU J N, et al. The utility of 12-lead Holter monitoring in patients with permanent atrial fibrillation for the identification of nonresponders after cardiac resynchronization therapy[J]. Journal of the American College of Cardiology, 2009, 53(12): 1050-1055. [6] PINEDA-LóPEZ F, MARTíNEZ-FERNáNDEZ A, ROJO-áLVAREZ J L, et al. A flexible 12-Lead/Holter device with compression capabilities for low-bandwidth mobile-ECG telemedicine applications[J]. Sensors, 2018, 18(11): 3773. [7] EBRAHIMI Z, LONI M, DANESHTALAB M, et al. A review on deep learning methods for ECG arrhythmia classification[J]. Expert Systems with Applications: X, 2020, 7: 100033. [8] BENJAMIN E J, VIRANI S S, CALLAWAY C W, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association[J]. Circulation, 2018, 137(12): 67-492. [9] ERICSSON L, GOUK H, LOY C C, et al. Self-supervised representation learning: introduction, advances, and challenges[J]. IEEE Signal Processing Magazine, 2022, 39(3): 42-62. [10] 李兴秀,唐建军,华晶. 结合CNN与双向LSTM的心律失常分类[J]. 计算机科学与探索,2021, 15(12): 2353-2361. LI X X, TANG J J, HUA J. Arrhythmia classification based on CNN and bidirectional LSTM[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2353-2361. [11] LONI M, ZOLJODI A, SINAEI S, et al. Neuropower: designing energy efficient convolutional neural network architecture for embedded systems[C]//Proceedings of the 2019 International Conference on Artificial Neural Networks and Machine Learning, Munich, Sep 17-19, 2019. Cham: Springer, 2019: 208-222. [12] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. [13] HUA Y, GUO J, ZHAO H. Deep belief networks and deep learning[C]//Proceedings of the 2015 International Conference on Intelligent Computing and Internet of Things. Piscataway: IEEE, 2015: 1-4. [14] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. [2023-09-03]. https://arxiv.org/abs/1409.2329. [15] CHENG J, DONG L, LAPATA M. Long short-term memory-networks for machine reading[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 551-561. [16] CHEN X, QIU X, ZHU C, et al. Sentence modeling with gated recursive neural network[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 793-798. [17] BO J Y, HUANG H W, CHAN A, et al. Pretraining ECG data with adversarial masking improves model generalizability for data-scarce tasks[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2211.07889. [18] SONG H M, KIM H K. Self-supervised anomaly detection for invehicle network using noised pseudo normal data[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1098-1108. [19] P?PPELBAUM J, CHADHA G S, SCHWUNG A. Contrastive learning based self-supervised time-series analysis[J]. Applied Soft Computing, 2022, 117: 108397. [20] 刘雅芬,郑艺峰,江铃燚,等. 深度半监督学习中伪标签方法综述[J]. 计算机科学与探索,2022, 16(6): 1279-1290. LIU Y F, ZHENG Y F, JIANG L Y, et al. Survey on pseudo-labeling methods in deep semi-supervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. [21] ELDELE E, RAGAB M, CHEN Z, et al. Label-efficient time series representation learning: a review[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2302.06433. [22] YU J, YIN H, XIA X, et al. Self-supervised learning for recommender systems: a survey[J]. IEEE Transactions on Know-ledge and Data Engineering, 2024, 36(1): 335-355. [23] RANI V, NABI S T, KUMAR M, et al. Self-supervised learning: a succinct review[J]. Archives of Computational Methods in Engineering, 2023, 30(4): 2761-2775. [24] CHEN X, DING M, WANG X, et al. Context autoencoder for self-supervised representation learning[J]. International Journal of Computer Vision, 2024, 132(1): 208-223. [25] LIU X, ZHANG F, HOU Z, et al. Self-supervised learning: generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 857-876. [26] ZHANG K, WEN Q, ZHANG C, et al. Self-supervised learn-ing for time series analysis: taxonomy, progress, and prospects[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2306.10125. [27] JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning[J]. Technologies, 2020, 9(1): 2. [28] SCHIAPPA M C, RAWAT Y S, SHAH M. Self-supervised learning for videos: a survey[J]. ACM Computing Surveys, 2023, 55: 1-37. [29] WANG Y, ALBRECHT C M, BRAHAM N A A, et al. Self-supervised learning in remote sensing: a review[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2206.13188. [30] ZHANG D, ZHOU F, WEI Y, et al. Unleashing the power of self-supervised image denoising: a comprehensive review[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2308.00247. [31] HAN K, XIAO A, WU E, et al. Transformer in transformer [C]//Advances in Neural Information Processing Systems 34, Dec 6-14, 2021: 15908-15919. [32] XIE Y, XU Z, ZHANG J, et al. Self-supervised learning of graph neural networks: a unified review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 2412-2429. [33] DEL PUP F, ATZORI M. Applications of self-supervised learning to biomedical signals: a survey[J]. IEEE Access, 2023, 11: 144180-144203. [34] LIU Z, ALAVI A, LI M, et al. Self-supervised contrastive learning for medical time series: a systematic review[J]. Sensors, 2023, 23(9): 4221. [35] KIYASSEH D, ZHU T, CLIFTON D A. CLOCS: contrastive learning of cardiac signals across space, time, and patients[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 5606-5615. [36] LUO C, WANG G, DING Z, et al. Segment origin prediction: a self-supervised learning method for electrocardiogram arrhythmia classification[C]//Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2021: 1132-1135. [37] OH J, CHUNG H, KWON J, et al. Lead-agnostic self-supervised learning for local and global representations of electro-cardiogram[C]//Proceedings of the 2022 Conference on Health, Inference, and Learning, Apr 7-8, 2022: 338-353. [38] NAKAMOTO M, KODERA S, TAKEUCHI H, et al. Self-supervised contrastive learning for electrocardiograms to detect left ventricular systolic dysfunction[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 1-7. [39] RABBANI S, KHAN N. Contrastive self-supervised learning for stress detection from ECG data[J]. Bioengineering, 2022, 9(8): 374. [40] NATH R K, TERVONEN J, N?RV?INEN J, et al. Towards self-supervised learning of ECG signal representation for the classification of acute stress types[C]//Proceedings of the Great Lakes Symposium on Very Large Scale Integration 2023. New York: ACM, 2023: 85-90. [41] SUH J, KIM J, LEE E, et al. Learning ECG representations for multi-label classification of cardiac abnormalities[C]//Proceedings of the 2021 Computing in Cardiology. Piscataway: IEEE, 2021: 1-4. [42] SOLTANIEH S, ETEMAD A, HASHEMI J. Analysis of augmentations for contrastive ECG representation learning[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-10. [43] LAN X, NG D, HONG S, et al. Intra-inter subject self-supervised learning for multivariate cardiac signals[C]//Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 4532-4540. [44] KUMAR C B, MONDAL A K, BHATIA M, et al. Self-supervised representation learning based OSA detection method using single channel ECG signals[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-15. [45] GOPAL B, HAN R, RAGHUPATHI G, et al. 3KG: contrastive learning of 12-lead electrocardiograms using physiologically-inspired augmentations[C]//Proceedings of the 2021 Machine Learning Research, Dec 4, 2021: 156-167. [46] LAI J, TAN H, WANG J, et al. Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset[J]. Nature Communications, 2023, 14(1): 3741. [47] LE D, TRUONG S, BRIJESH P, et al. sCL-ST: supervised contrastive learning with semantic transformations for multi-ple lead ECG arrhythmia classification[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(6): 2818-2828. [48] CHEN H, WANG G, ZHANG G, et al. CLECG: a novel contrastive learning framework for electrocardiogram arrhythmia classification[J]. IEEE Signal Processing Letters, 2021, 28: 1993-1997. [49] CHENG J Y, GOH H, DOGRUSOZ K, et al. Subject-aware contrastive learning for biosignals[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2007.04871. [50] KIYASSEH D, ZHU T, CLIFTON D. CROCS: clustering and retrieval of cardiac signals based on patient disease class, sex, and age[C]//Advances in Neural Information Processing Systems 34, Dec 6-14, 2021: 15557-15569. [51] ATIENZA A, BARDRAM J, PUTHUSSERYPADY S. Subject-based non-contrastive self-supervised learning for ECG signal processing[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2305.10347. [52] LIU W, ZHANG H, CHANG S, et al. A joint cross-dimensional contrastive learning framework for 12-lead ECGs and its heterogeneous deployment on SoC[J]. Computers in Biology and Medicine, 2023, 152: 106390. [53] WEI C T, HSIEH M E, LIU C L, et al. Contrastive heartbeats: contrastive learning for self-supervised ECG represen-tation and phenotyping[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 1126-1130. [54] ZHANG X, ZHAO Z, TSILIGKARIDIS T, et al. Self-supervised contrastive pre-training for time series via time-frequency consistency[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 3988-4003. [55] LI J, LIU C, CHENG S, et al. Frozen language model helps ECG zero-shot learning[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2303.12311. [56] BELGIU M, DR?GU? L. Random forest in remote sensing: a review of applications and future directions[J]. Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. [57] HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. [58] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent—a new approach to self-supervised learning[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 21271-21284. [59] GRABOWSKI B, G?OMB P, MASARCZYK W, et al. Classification and self-supervised regression of arrhythmic ECG signals using convolutional neural networks[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2210.14253. [60] GEDON D, RIBEIRO A H, WAHLSTR?M N, et al. First steps towards self-supervised pretraining of the 12-lead ECG[C]//Proceedings of the 2021 Computing in Cardiology. Piscataway: IEEE, 2021: 1-4. [61] ZHANG H, LIU W, SHI J, et al. MaeFE: masked autoencoders family of electrocardiogram for self-supervised pretraining and transfer learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 1-15. [62] VAZQUEZ-RODRIGUEZ J, LEFEBVRE G, CUMIN J, et al. Transformer-based self-supervised learning for emotion recognition[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 2605-2612. [63] YANG S, LIAN C, ZENG Z. Masked autoencoder for ECG representation learning[C]//Proceedings of the 2022 12th International Conference on Information Science and Technology. Piscataway: IEEE, 2022: 95-98. [64] SAWANO S, KODERA S, TAKEUCHI H, et al. Masked autoencoder-based self-supervised learning for electrocardiograms to detect left ventricular systolic dysfunction[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 1-8. [65] LEE B T, KONG S T, SONG Y, et al. Self-supervised learning with electrocardiogram delineation for arrhythmia detection[C]//Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2021: 591-594. [66] CHOI S, MOUSAVI S, SI P, et al. ECGBERT: understanding hidden language of ECGs with self-supervised representation learning[EB/OL]. [2023-09-03]. https://arxiv.org/abs/2306.06340. [67] SARKAR P, ETEMAD A. Self-supervised learning for ECG-based emotion recognition[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 3217-3221. [68] SARKAR P, ETEMAD A. Self-supervised ECG representation learning for emotion recognition[J]. IEEE Transactions on Affective Computing, 2020, 13(3): 1541-1554. [69] SARKAR P, LOBMAIER S, FABRE B, et al. Detection of maternal and fetal stress from the electrocardiogram with self-supervised representation learning[J]. Scientific Reports, 2021, 11(1): 24146. [70] WU W, HUANG Y, WU X. A new deep learning method with self-supervised learning for delineation of the electrocardiogram[J]. Entropy, 2022, 24(12): 1828. [71] ZHANG W, GENG S, HONG S. A simple self-supervised ECG representation learning method via manipulated temporal-spatial reverse detection[J]. Biomedical Signal Processing and Control, 2023, 79: 104194. [72] LIU F, LIU C, ZHAO L, et al. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(7): 1368-1373. [73] GAO H, LIU C, WANG X, et al. An open-access ECG database for algorithm evaluation of QRS detection and heart rate estimation[J]. Journal of Medical Imaging and Health Informatics, 2019, 9(9): 1853-1858. [74] CAI Z, LIU C, GAO H, et al. An open-access long-term wearable ECG database for premature ventricular contractions and supraventricular premature beat detection[J]. Journal of Medical Imaging and Health Informatics, 2020, 10(11): 2663-2667. [75] WANG X, MA C, ZHANG X, et al. Paroxysmal atrial fibrillation events detection from dynamic ECG recordings: the 4th China physiological signal challenge 2021[J]. PhysioNet, 2021, 1: 1-83. [76] AHAMED M A, HASAN K A, MONOWAR K F, et al. ECG heartbeat classification using ensemble of efficient machine learning approaches on imbalanced datasets[C]//Proceedings of the 2020 2nd International Conference on Advanced Information and Communication Technology. Piscataway: IEEE, 2020: 140-145. [77] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69. [78] MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50. [79] MOODY G. A new method for detecting atrial fibrillation using RR intervals[J]. Computers in Cardiology, 1983, 10: 227-230. [80] GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): 215-220. [81] WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al. PTB-XL, a large publicly available electrocardiography data-set[J]. Scientific Data, 2020, 7(1): 154. [82] ZHENG J, ZHANG J, DANIOKO S, et al. A 12-lead electro-cardiogram database for arrhythmia research covering more than 10,000 patients[J]. Scientific data, 2020, 7(1): 48. [83] ZHENG J, CHU H, STRUPPA D, et al. Optimal multi-stage arrhythmia classification approach[J]. Scientific Reports, 2020, 10(1): 2898. [84] ALKMIM M B, FIGUEIRA R M, MARCOLINO M S, et al. Improving patient access to specialized health care: the Telehealth Network of Minas Gerais, Brazil[J]. Bulletin of the World Health Organization, 2012, 90: 373-378. [85] CLIFFORD G D, LIU C, MOODY B, et al. AF classification from a short single lead ECG recording: the PhysioNet/computing in cardiology challenge 2017[C]//Proceedings of the 2017 Computing in Cardiology. Piscataway: IEEE, 2017: 1-4. [86] ALDAY E A P, GU A, SHAH A J, et al. Classification of 12-lead ECGs: the PhysioNet/computing in cardiology challenge 2020[J]. Physiological Measurement, 2020, 41(12): 124003. [87] REYNA M A, SADR N, ALDAY E A P, et al. Will two do? Varying dimensions in electrocardiography: the PhysioNet/computing in cardiology challenge 2021[C]//Proceedings of the 2021 Computing in Cardiology. Piscataway: IEEE, 2021: 1-4. [88] KOLDIJK S, SAPPELLI M, VERBERNE S, et al. The swell knowledge work dataset for stress and user modeling research[C]//Proceedings of the 16th International Conference on Multimodal Interaction. New York: ACM, 2014: 291-298. [89] SCHMIDT P, REISS A, DUERICHEN R, et al. Introducing wesad, a multimodal dataset for wearable stress and affect detection[C]//Proceedings of the 20th ACM International Conference on Multimodal Interaction. New York: ACM, 2018: 400-408. [90] AHMAD Z, RABBANI S, ZAFAR M R, et al. Multi-level stress assessment from ECG in a virtual reality environment using multimodal fusion[J]. IEEE Sensors Journal, 2023, 23: 29559-29570. [91] KATSIGIANNIS S, RAMZAN N. DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 22(1): 98-107. [92] MIRANDA-CORREA J A, ABADI M K, SEBE N, et al. AMIGOS: a dataset for affect, personality and mood research on individuals and groups[J]. IEEE Transactions on Affective Computing, 2018, 12(2): 479-493. [93] SUBRAMANIAN R, WACHE J, ABADI M K, et al. ASCERTAIN: emotion and personality recognition using commercial sensors[J]. IEEE Transactions on Affective Computing, 2016, 9(2): 147-160. [94] PENZEL T, MOODY G B, MARK R G, et al. The apnea-ECG database[C] //Proceedings of the Computers in Cardiology 2000. Piscataway: IEEE, 2000: 255-258. [95] MOSTAFA S S, MENDON?A F, MORGADO-DIAS F, et al. SpO2 based sleep apnea detection using deep learning[C]//Proceedings of the 2017 IEEE 21st International Conference on Intelligent Engineering Systems. Piscataway: IEEE, 2017: 91-96. [96] LEE J M, KIM D J, KIM I Y, et al. Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data[J]. Computers in Biology and Medicine, 2002, 32(1): 37-47. [97] LAGUNA P, MARK R G, GOLDBERG A, et al. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG[C]//Proceedings of the Computers in Cardiology 1997. Piscataway: IEEE, 1997: 673-676. [98] ZHANG J, WANG L, LIU X, et al. Chinese cardiovascular disease database (CCDD) and its management tool[C]//Proceedings of the 2010 IEEE International Conference on BioInformatics and BioEngineering. Piscataway: IEEE, 2010: 66-72. [99] KALYAKULINA A I, YUSIPOV I I, MOSKALENKO V A, et al. LUDB: a new open-access validation tool for electrocardiogram delineation algorithms[J]. IEEE Access, 2020, 8: 186181-186190. [100] PARVANEH S, RUBIN J, BABAEIZADEH S, et al. Cardiac arrhythmia detection using deep learning: a review[J]. Journal of Electrocardiology, 2019, 57: 70-74. [101] SAHOO S, DASH M, BEHERA S, et al. Machine learning approach to detect cardiac arrhythmias in ECG signals: a survey[J]. Irbm, 2020, 41(4): 185-194. [102] XIAO Q, LEE K, MOKHTAR S A, et al. Deep learning-based ECG arrhythmia classification: a systematic review[J]. Applied Sciences, 2023, 13(8): 4964. [103] HONG S, ZHOU Y, SHANG J, et al. Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review[J]. Computers in Biology and Medicine, 2020, 122: 103801. [104] PETMEZAS G, STEFANOPOULOS L, KILINTZIS V, et al. State-of-the-art deep learning methods on electrocardiogram data: systematic review[J]. JMIR Medical Informatics, 2022, 10(8): e38454. [105] HASNUL M A, AZIZ N A A, ALELYANI S, et al. Electrocardiogram-based emotion recognition systems and their applications in healthcare—a review[J]. Sensors, 2021, 21(15): 5015. [106] NIKOLOVA D, PETKOVA P, MANOLOVA A, et al. ECG-based emotion recognition: overview of methods and applications[C]//Advances in Neural Networks and Applications 2018. Piscataway: IEEE, 2018: 1-5. [107] ABDULLAH S M S A, AMEEN S Y A, SADEEQ M A M, et al. Multimodal emotion recognition using deep learning[J]. Journal of Applied Science and Technology Trends, 2021, 2(2): 52-58. [108] LIN W, LI C. Review of studies on emotion recognition and judgment based on physiological signals[J]. Applied Sciences, 2023, 13(4): 2573. [109] BOTA P J, WANG C, FRED A L N, et al. A review, current challenges, and future possibilities on emotion recognition using machine learning and physiological signals[J]. IEEE Access, 2019, 7: 140990-141020. [110] SALARI N, HOSSEINIAN-FAR A, MOHAMMADI M, et al. Detection of sleep apnea using machine learning algorithms based on ECG signals: a comprehensive systematic review[J]. Expert Systems with Applications, 2022, 187: 115950. [111] MOSTAFA S S, MENDON?A F, RAVELO-GARCíA A G, et al. A systematic review of detecting sleep apnea using deep learning[J]. Sensors, 2019, 19(22): 4934. [112] SHETA A, TURABIEH H, THAHER T, et al. Diagnosis of obstructive sleep apnea from ECG signals using machine learning and deep learning classifiers[J]. Applied Sciences, 2021, 11(14): 6622. [113] BALDI P. Autoencoders, unsupervised learning, and deep architectures[C]//Proceedings of the 2011 International Con-ference on Unsupervised and Transfer Learning, Bellevue, Jul 2, 2011: 37-49. [114] KINGMA D P, WELLING M. An introduction to variational autoencoders[J]. Foundations and Trends? in Machine Learning, 2019, 12(4): 307-392. [115] KUZNETSOV V V, MOSKALENKO V A, GRIBANOV D V, et al. Interpretable feature generation in ECG using a variational autoencoder[J]. Frontiers in Genetics, 2021, 12: 638191. [116] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65. [117] HAZRA D, BYUN Y C. SynSigGAN: generative adversarial networks for synthetic biomedical signal generation[J]. Biology, 2020, 9(12): 441. [118] BANERJEE R, GHOSE A. Synthesis of realistic ECG waveforms using a composite generative adversarial network for classification of atrial fibrillation[C]//Proceedings of the 2021 29th European Signal Processing Conference. Piscataway: IEEE, 2021: 1145-1149. [119] YANG L, ZHANG Z, SONG Y, et al. Diffusion models: a comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2023, 56(4): 1-39. [120] ALCARAZ J M L, STRODTHOFF N. Diffusion-based conditional ECG generation with structured state space models[J]. Computers in Biology and Medicine, 2023,163: 107115. [121] ADIB E, FERNANDEZ A S, AFGHAH F, et al. Synthetic ECG signal generation using probabilistic diffusion models[J]. IEEE Access, 2023,11: 75818-75828. [122] MAHARANA K, MONDAL S, NEMADE B. A review: data pre-processing and data augmentation techniques[J]. Global Transitions Proceedings, 2022, 3(1): 91-99. [123] GARCEA F, SERRA A, LAMBERTI F, et al. Data augmentation for medical imaging: a systematic literature review[J]. Computers in Biology and Medicine, 2023, 152: 106391. [124] 黄训华,张凤斌,樊好义,等. 基于多模态对抗学习的无监督时间序列异常检测[J]. 计算机研究与发展,2021, 58(8): 1655-1667. HUANG X H, ZHANG F B, FAN H Y, et al. Unsupervised time series anomaly detection based on multi-modal adversarial learning[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667. [125] 赵小明,杨轶娇,张石清. 面向深度学习的多模态情感识别研究进展[J]. 计算机科学与探索,2022, 16(7): 1479-1503. ZHAO X M, YANG Y J, ZHANG S Q. Research progress of multimodal emotion recognition oriented to deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. [126] LIU J, LI Z, JIN Y, et al. A review of arrhythmia detection based on electrocardiogram with artificial intelligence[J]. Expert Review of Medical Devices, 2022, 19(7): 549-560. [127] AL-ZAITI S, BESOMI L, BOUZID Z, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram[J]. Nature Communications, 2020, 11(1): 3966. |
[1] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
[2] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[3] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
[4] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[5] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[6] | WANG Yonggui, LIU Danni. Cross-Domain Recommendation Algorithm Combining Multi-personalized Bridges and Self-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805. |
[7] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[8] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[9] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[10] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[11] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[12] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
[13] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[14] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[15] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/