Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (4): 899-915.DOI: 10.3778/j.issn.1673-9418.2306061
• Frontiers·Surveys • Previous Articles Next Articles
WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua
Online:
2024-04-01
Published:
2024-04-01
王恩龙,李嘉伟,雷佳,周士华
WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915.
王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2306061
[1] LEI J, LI J W, LIU J Y, et al. GALFusion: multi-exposure image fusion via a global-local aggregation learning network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-15. [2] LI J W, LIU J Y, ZHOU S H, et al. GeSeNet: a general semantic-guided network with couple mask ensemble for medical image fusion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. DOI: 10.1109/TNNLS.2023.3293274. [3] LI J W, LIU J Y, ZHOU S H, et al. Infrared and visible image fusion based on residual dense network and gradient loss [J]. Infrared Physics & Technology, 2023, 128: 104486. [4] WANG J, SONG K C, BAO Y Q, et al. CGFNet: cross-guided fusion network for RGB-T salient object detection [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(5): 2949-2961. [5] 薛震, 张亮亮, 刘吉. 基于改进YOLOv7的融合图像多目标检测方法[J]. 兵器装备工程报, 2023, 44(6): 166-172. XUE Z, ZHANG L L, LIU J. A fusion image multi object detection method based on improved YOLOv7[J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 166-172. [6] LU R T, YANG X G, LI W P, et al. Robust infrared small target detection via multidirectional derivative-based weig-hted contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [7] 邓楷文, 葛晨阳. 改进YOLOv5的轻量化红外交通目标检测[J]. 计算机工程与应用, 2023, 59(12): 184-192. DENG K W, GE C Y. Research on lightweight of improved YOLOv5 infrared traffic detection network[J]. Computer Engineering and Applications, 2023, 59(12): 184-192. [8] 别倩, 王晓, 徐新, 等. 红外-可见光跨模态的行人检测综述[J]. 中国图象图形学报, 2023, 28(5): 1287-1307. BIE Q, WANG X, XU X, et al. Overview of infrared visible cross modal pedestrian detection[J]. Journal of Image and Graphics, 2023, 28(5): 1287-1307. [9] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4277-4286. [10] LI C L, XIANG Z Q, TANG J, et al. RGBT tracking via noise-robust cross-modal ranking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(9): 5019-5031. [11] MULLER A C, NARAYANAN S. Cognitively-engineered multisensor image fusion for military applications[J]. Information Fusion, 2009, 10(2): 137-149. [12] CHEN J, LI X J, LUO L B, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508: 64-78. [13] LIU X B, MEI W B, DU H Q. Structure tensor and nonsubsampled shearlet transform based algorithm for CT and MRI image fusion[J]. Neurocomputing, 2017, 235: 131-139. [14] 邸敬, 郭文庆, 刘冀钊, 等. 基于NSCT域滚动引导滤波与自适应PCNN的医学图像融合[J]. 计算机应用研究, 2023, 40(7): 1-7. DI J, GUO W Q, LIU J Z, et al. Medical image fusion based on NSCT domain rolling guided filtering and adaptive PCNN[J]. Application Research of Computers, 2023, 40(7): 1-7. [15] 杨艳春, 裴佩佩, 党建武, 等. 基于交替梯度滤波器和改进PCNN的红外与可见光图像融合[J]. 光学精密工程, 2022,30(9): 1123-1138. YANG Y C, PEI P P, DANG J W, et al. Infrared and visible image fusion based on alternating gradient filter and improved PCNN[J]. Optics and Precision Engineering, 2022, 30(9): 1123-1138. [16] WANG J, PENG J Y, FENG X Y, et al. Fusion method for infrared and visible images by using non-negative sparse representation[J]. Infrared Physics & Technology, 2014, 67: 477-489. [17] LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. [18] LI H, WU X J, KITTER J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4733-4746. [19] 王纪委, 曲怀敬, 魏亚南, 等. 结合线性稀疏表示和图像抠图的多聚焦图像融合方法[J]. 计算机应用研究, 2022, 39(6): 1879-1885. WANG J W, QU H J, WEI Y N, et al. A multifocal image fusion method combining linear sparse representation and image matting[J]. Application Research of Computers, 2022, 39(6): 1879-1885. [20] MOU J, GAO W, SONG Z X. Image fusion based on non-negative matrix factorization and infrared feature extraction [C]//Proceedings of the 2013 6th International Congress on Image and Signal Processing, Hangzhou, Dec 16-18, 2013. Washington: IEEE Computer Society, 2013: 1046-1050. [21] FU Z Z, WANG X, XU J, et al. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physics & Technology, 2016, 77: 114-123. [22] WANG A Z, WANG M H. RGB-D salient object detection via minimum barrier distance transform and saliency fusion[J]. IEEE Signal Processing Letters, 2017, 24: 663-667. [23] YANG Y, ZHANG Y M, HUANG S Y, et al. Infrared and visible image fusion using visual saliency sparse representation and detail injection model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-15. [24] NIE R C, MA C Z, CAO J D, et al. A total variation with joint norms for infrared and visible image fusion[J]. IEEE Transactions on Multimedia, 2022, 24: 1460-1472. [25] LI J W, LIU J Y, ZHOU S H, et al. Learning a coordinated network for detail-refinement multiexposure image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 713-727. [26] ZHANG X C, DEMIRIS Y. Visible and infrared image fusion using deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535-10554. [27] 安晓东, 李亚丽, 王芳. 汽车驾驶辅助系统红外与可见光融合算法综述[J]. 计算机工程与应用, 2022, 58(19): 64-75. AN X D, LI Y L, WANG F. Overview of infrared and visible image fusion algorithms for automotive driving assistance system[J]. Computer Engineering and Applications, 2022, 58(19): 64-75. [28] 唐霖峰, 张浩, 徐涵, 等. 基于深度学习的图像融合方法综述[J]. 中国图象图形学报, 2023, 28(1): 3-36. TANG L F, ZHANG H, XU H, et al. Deep learning-based image fusion: a survey[J]. Journal of Image and Graphics, 2023, 28(1): 3-36. [29] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. [30] LI H, WU X J, KITTER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. [31] LI Q Q, HAN G L, LIU P X, et al. A multilevel hybrid transmission network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14. [32] XU H, GONG M Q, TIAN X, et al. CUFD: an encoder-decoder network for visible and infrared image fusion based on common and unique feature decomposition[J]. Computer Vision and Image Understanding, 2022, 218: 103407. [33] JIAN L H, YANG X M, LIU Z, et al. SEDRFuse: a symmetric encoder-decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-15. [34] WANG X J, HUA Z, LI J J. PACCDU: pyramid attention cross-convolutional dual UNet for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-16. [35] LI H, WU X J, DURRANI T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656. [36] WANG Z S, WANG J Y, WU Y Y, et al. UNFusion: a unified multi-scale densely connected network for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3360-3374. [37] WANG Z S, WU Y Y, WANG J Y, et al. Res2Fusion: infrared and visible image fusion based on dense Res2Net and double nonlocal attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. [38] LIANG P W, JIANG J J, LIU X M, et al. Fusion from decomposition: a self-supervised decomposition approach for image fusion[C]//Proceedings of the 17th European Conference on Computer Vision, Oct 23-27, 2022. Cham: Springer, 2022:719-735. [39] LI H F, ZHAO J Z, LI J X, et al. Feature dynamic alignment and refinement for infrared-visible image fusion: translation robust fusion[J]. Information Fusion, 2023, 95: 26-41. [40] TANG L F, XIANG X Y, ZHANG H, et al. DIVFusion: darkness-free infrared and visible image fusion[J]. Information Fusion, 2023, 91: 477-493. [41] LI Z X, LIU J Y, LIU R S, et al. Multiple task-oriented encoders for unified image fusion[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021. Washington: IEEE Computer Society, 2021:1-6. [42] ZHU Z G, YANG X G, LU R T, et al. CLF-Net: contrastive learning for infrared and visible image fusion network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15. [43] XIAO W X, ZHANG Y F, WANG H B, et al. Heterogeneous knowledge distillation for simultaneous infrared-visible image fusion and super-resolution[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15. [44] SU W J, HUANG Y D, LI Q F, et al. Infrared and visible image fusion based on adversarial feature extraction and stable image reconstruction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14. [45] MA J Y, TANG L F, XU M L, et al. STDFusionNet: an infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13. [46] LONG Y Z, JIA H T, ZHONG Y D, et al. RXDNFuse: a aggregated residual dense network for infrared and visible image fusion[J]. Information Fusion, 2021, 69: 128-141. [47] GUO C X, FAN D D, JIANG Z X, et al. MDFN: mask deep fusion network for visible and infrared image fusion without reference ground-truth[J]. Expert Systems with Applications, 2022, 211: 118631. [48] LIU J Y, DIAN R W, LI S T, et al. SGFusion: a saliency guided deep-learning framework for pixel-level image fusion[J]. Information Fusion, 2023, 91: 205-214. [49] WANG X, GUAN Z, YU S S, et al. Infrared and visible image fusion via decoupling network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. [50] XU H, MA J Y, JIANG J J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. [51] ZHANG H, XU H, XIAO Y, et al. Rethinking the image fusion: a fast unified image fusion network based on proportional maintenance of gradient and intensity[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12797-12804. [52] ZHANG H, MA J Y. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 2021, 129(10): 2761-2785. [53] CHENG C Y, XU T Y, WU X J. MUFusion: a general unsupervised image fusion network based on memory unit[J]. Information Fusion, 2023, 92: 80-92. [54] TANG W, HE F Z, LIU Y, et al. DATFuse: infrared and visible image fusion via dual attention transformer[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(7): 3159-3172. [55] LI J, ZHU J M, LI C, et al. CGTF: convolution-guided transformer for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14. [56] LIU J Y, WU Y H, WU G Y, et al. Learn to search a lightweight architecture for target-aware infrared and visible image fusion[J]. IEEE Signal Processing Letters, 2022, 29: 1614-1618. [57] WANG D, LIU J Y, FAN X, et al. Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Montreal, Aug 19-27, 2022: 3508-3515. [58] XU H, MA J Y, YUAN J T, et al. RFNet: unsupervised network for mutually reinforcing multi-modal image registration and fusion[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Washington: IEEE Computer Society, 2022: 19647-19656. [59] XU H, YUAN J T, MA J Y. MURF: mutually reinforcing multi-modal image registration and fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12148-12166. [60] TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42. [61] WANG D, LIU J Y, LIU R S, et al. An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection[J]. Information Fusion, 2023, 98: 101828. [62] LI H F, CEN Y L, LIU Y, et al. Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2021, 30: 4070-4083. [63] WANG B W, ZOU Y, ZHANG L F, et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J]. Optics and Lasers in Engineering, 2022, 156: 107078. [64] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of ACM, 2020, 63(11): 139-144. [65] MA J Y, YU W, LIANG P W, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. [66] MA J Y, ZHANG H, SHAO Z F, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. [67] ZHOU H B, HOU J L, ZHANG Y D, et al. Unified gradient-and intensity-discriminator generative adversarial network for image fusion[J]. Information Fusion, 2022, 88: 184-201. [68] XU H, LIANG P W, YU W, et al. Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3954-3960. [69] FU Y, WU X J, DURRANI T. Image fusion based on generative adversarial network consistent with perception[J]. Information Fusion, 2021, 72: 110-125. [70] YANG Y, LIU J X, HUANG S Y, et al. Infrared and visible image fusion via texture conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4771-4783. [71] TANG Z M, XIAO G B, GUO J W, et al. Dual-attention-based feature aggregation network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13. [72] WANG J X, XI X L, LI D M, et al. FusionGRAM: an infrared and visible image fusion framework based on gradient residual and attention mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12. [73] LI J, HUO H T, LI C, et al. AttentionFGAN: infrared and visible image fusion using attention-based generative adversarial networks[J]. IEEE Transactions on Multimedia, 2021, 23: 1383-1396. [74] WANG Z S, SHAO W Y, CHEN Y L, et al. A cross-scale iterative attentional adversarial fusion network for infrared and visible images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8): 3677-3688. [75] YIN H T, XIAO J H. Laplacian pyramid generative adversarial network for infrared and visible image fusion[J]. IEEE Signal Processing Letters, 2022, 29: 1988-1992. [76] ZHOU H B, WU W, ZHANG Y D, et al. Semantic-supervised infrared and visible image fusion via a dual-discriminator generative adversarial network[J]. IEEE Transactions on Multimedia, 2023, 25: 635-648. [77] LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 5792-5801. [78] RAO Y J, WU D, HAN M N, et al. AT-GAN: a generative adversarial network with attention and transition for infrared and visible image fusion[J]. Information Fusion, 2023, 92: 336-349. [79] HAN M N, YU K L, QIU J H, et al. Boosting target-level infrared and visible image fusion with regional information coordination[J]. Information Fusion, 2023, 92: 268-288. [80] ZHANG J, JIAO L C, MA W P, et al. Transformer based conditional GAN for multimodal image fusion[J]. IEEE Transactions on Multimedia, 2023, 25: 8988-9001. [81] JIA X Y, ZHU C, LI M Z, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 3489-3497. [82] 孙彬, 高云翔, 诸葛吴为, 等. 可见光与红外图像融合质量评价指标分析[J]. 中国图象图形学报, 2023, 28(1): 144-155. SUN B, GAO Y X, ZHUGE W W, et al. Analysis of quality objective assessment metrics for visible and infrared image fusion[J]. Journal of Image and Graphics, 2023, 28(1): 144-155. [83] 杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7): 1021-1035. YANG Y C, LI J, WANG Y P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1021-1035. |
[1] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[2] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[3] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[4] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[5] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[6] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[7] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[8] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[9] | SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626. |
[10] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[11] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[12] | WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319. |
[13] | WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang. Review of Bare Footprint Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 44-57. |
[14] | GAO Jie, ZHAO Xinxin, YU Jian, XU Tianyi, PAN Li, YANG Jun, YU Mei, LI Xuewei. Counting Method Based on Density Graph Regression and Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 127-137. |
[15] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/