Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (5): 1182-1196.DOI: 10.3778/j.issn.1673-9418.2307103
• Frontiers·Surveys • Previous Articles Next Articles
ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun
Online:
2024-05-01
Published:
2024-04-29
张凯丽,王安志,熊娅维,刘运
ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196.
张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2307103
[1] KATYAL S, KUMAR S, SAKHUJA R, et al. Object detection in foggy conditions by fusion of saliency map and YOLO[C]//Proceedings of the 12th International Conference on Sensing Technology, Limerick, Dec 4-8, 2018. Piscataway: IEEE, 2018: 154-159. [2] SINDAGI V A, OZA P, YASARLA R, et al. Prior-based domain adaptive object detection for hazy and rainy conditions[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 763-780. [3] ZHANG Q, ZHANG L Q, WANG D, et al. Global and local information aggregation network for edge-aware salient object detection[J]. Journal of Visual Communication and Image Representation, 2021, 81: 103350. [4] SINGH D, KUMAR V A. Comprehensive review of computational dehazing techniques[J]. Archives of Computational Methods in Engineering, 2019, 26(5): 1395-1413. [5] ZHAN Y, ZHAO W L. Instance search via instance level segmentation and feature representation[J]. Journal of Visual Communication and Image Representation, 2021, 79: 103253. [6] ZHANG J, LI Z X, ZHANG C L. Stable self-attention adversarial learning for semi-supervised semantic image segmentation[J]. Journal of Visual Communication and Image Representation, 2021, 78: 103170. [7] NISHITA T, MIYAWAKI Y, NAKAMAE E. A shading model for atmospheric scattering considering luminous intensity distribution of light sources[C]//Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1987: 303-310. [8] STARK J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-896. [9] KIM J Y, KIM L S, HWANG S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(4): 475-484. [10] GALDRAN A, VAZQUEZ-CORRAL J, PARDO D, et al. Fusionbased variational image dehazing[J]. IEEE Signal Processing Letters, 2019, 24(2): 151-155. [11] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 33(12): 2341-2353. [12] FATTAL R. Single image dehazing[J]. Association for Com-puting Machinery Transactions on Graphics, 2008, 27(3): 72. [13] ZHU Q S, MAI J M, SHAO L. Single image dehazing using color attenuation prior[C]//Proceedings of the 2014 British Machine Vision Conference, Nottingham, Sep 1-5, 2014. [14] CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. [15] LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 4780-4788. [16] ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 3194-3203. [17] LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet: attention-based multi-scale network for image dehazing[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7314-7323. [18] QIN X, WANG Z L, BAI Y C, et al. FFA-Net: feature fusion attention network for single image dehazing[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Palo Alto: AAAI Press, 2020: 11908-11915. [19] DONG H, PAN J S, XIANG L, et al. Multiscale boosted dehazing network with dense feature fusion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2154-2164. [20] WU H, QU Y, LIN S, et al. Contrastive learning for compact single image dehazing[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Reco-gnition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 10546-10555. [21] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [22] 郑玉彤, 孙昊英, 宋伟. 隐空间转换的混合样本图像去雾[J]. 计算机工程与应用, 2023, 59(9): 225-236. ZHENG Y T, SUN H Y, SONG W. Hybrid samples image dehazing via latent space translation[J]. Computer Engineering and Applications, 2023, 59(9): 225-236. [23] 黄淑英, 汪斌, 李红霞, 等. 基于生成对抗网络的图像去雾算法[J]. 模式识别与人工智能, 2021, 34(11): 990-1003. HUANG S Y, WANG B, LI H X, et al. Image dehazing based on generative adversarial network[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(11): 990-1003. [24] 禹晶, 徐东彬, 廖庆敏. 图像去雾技术研究进展[J].中国图象图形学报, 2011, 16(9): 1561-1576. YU J, XU D B, LIAO Q M. Research on image dehazing technology[J]. Journal of Image and Graphics, 2011, 16(9): 1561-1576. [25] GUI J, CONG X F, CAO Y, et al. A comprehensive survey on image dehazing based on deep learning[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, Aug 19-27, 2021: 4426-4433. [26] 郑凤仙, 王夏黎, 何丹丹, 等. 单幅图像去雾算法研究综述[J]. 计算机工程与应用, 2022, 58(3): 1-14. ZHENG F X, WANG X L, HE D D, et al. Survey on the research of single image dehazing methods[J]. Computer Engineering and Applications, 2022, 58(3): 1-14. [27] 贾童瑶, 卓力, 李嘉锋, 等. 基于深度学习的单幅图像去雾研究进展[J]. 电子学报, 2023, 51(1): 231-245. JIA T Y, ZHUO L, LI J F, et al. Research on the deep-learning-based single image dehazing methods[J]. Acta Electronica Sinica, 2023, 51(1): 231-245. [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [29] ZHAO D, LI J, LI H Y, et al. Complementary feature enhanced network with vision transformer for image dehazing[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2109.07100. [30] YANG Y, ZHANG H W, WU X, et al. MSTFDN: multi-scale transformer fusion dehazing network[J]. Application Intelligence, 2022, 53(5): 5951-5962. [31] SUAREZ P L, CARPIO D, SAPPA A D, et al. Transformer based image dehazing[C]//Proceedings of the 16th International Conference on Signal-Image Technology & Internet-Based Systems, Dijon, Oct 19-21, 2022. Piscataway: IEEE, 2022: 148-154. [32] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 1833-1844. [33] SONG Y D, HE Z Q, QIAN H, et al. Vision transformer for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927-1941. [34] LIU Z, LINY T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002. [35] BA L J, KIROS J R, HINTON G E. Layer normalization [EB/OL]. [2023-05-12]. https://arxiv.org/abs/1607.06450. [36] HENDRYCKS D, GIMPEL K. Bridging nonlinearities and stochastic regularizers with Gaussian error linear units[EB/OL]. [2023-05-12]. https://arxiv.org/abs/1606.08415. [37] LIU J Z, YUAN H Q, YUAN Z Q. Visual transformer with stable prior and patch-level attention for single image dehazing[J]. Neurocomputing, 2023, 551. [38] QIU Y W, ZHANG K H, WANG C X, et al. MB-TaylorFormer: multi-branch efficient transformer expanded by Taylor formula for image dehazing[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2308.14036. [39] TONG M, WANG Y Z, CUI P, et al. Semi-uformer: semi-supervised uncertainty-aware transformer for image dehazing[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2210.16057. [40] LIU Y Y, LIU H, LI L Y, et al. A data-centric solution to nonhomogeneous dehazing via vision transformer[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2304.07874. [41] WANG C, PAN J S, LIN W Y, et al. Self-Promer: self-prompt dehazing transformers with depth-consistency[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2303.07033. [42] GAO G L, CAO J, BAO C, et al. A novel transformer-based attention network for image dehazing[J]. Sensors, 2022, 22(9): 3428. [43] CHEN S X, YE T, LIU Y, et al. Dual-former: hybrid self-attention transformer for efficient image restoration[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2210.01069. [44] XU J, CHEN Z X, LUO H, et al. An efficient dehazing algorithm based on the fusion of transformer and convolutional neural network[J]. Sensors, 2023, 23(1): 43. [45] PARIHAR A S, JAVA A. Densely connected convolutional transformer for single image dehazing[J]. Journal of Visual Communication and Image Representation, 2022, 90: 103722. [46] TAGHANAKI S A, BENTAIEB A, SHARMA A, et al. Select, attend, and transfer: light, learnable skip connections[C]//Proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, Shenzhen, Oct 13, 2019. Cham: Springer, 2019: 417-425. [47] CHEN S X, YE T, LIU Y, et al. DEHRFormer: real-time transformer for depth estimation and haze removal from varicolored haze scenes[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2210.01069. [48] GUO C L, YAN Q X, ANWAR S, et al. Image dehazing transformer with transmission-aware 3D position embedding[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 5802-5810. [49] JIANG L M, ZHANG C X, HUANG M Y, et al. TSIT: a simple and versatile framework for image-to-image translation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 206-222. [50] WANG X T, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 606-615. [51] LI X L, HUA Z, LI J J. Two-stage single image dehazing network using swin transformer[J]. The Institution of Engineering and Technology Image Processing, 2022, 16(9): 2518-2534. [52] LIU Y, YAN Z S, CHEN S X, et al. NightHazeFormer: single nighttime haze removal using prior query transformer[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2305.09533. [53] DONG P W, WANG B. TransRA: transformer and residual attention fusion for single remote sensing image dehazing[J]. Multidimensional Systems and Signal Processing, 2022, 33(4): 1119-1138. [54] KULKARNI A, MURALA S. Aerial image dehazing with attentive deformable transformers[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 2-7, 2023. Piscataway: IEEE, 2023: 6294-6303. [55] CHI K C, YUAN Y, WANG Q. Trinity-Net: gradient-guided swin transformer-based remote sensing image dehazing and beyond[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. [56] ANCUTI C, ANCUTI C O, DE VLEESCHOUWER C. D-HAZY: a dataset to evaluate quantitatively dehazing algorithms[C]//Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 2226-2230. [57] ANCUTI C, ANCUTI C O, TIMOFTE R, et al. I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images[C]//Proceedings of the 19th International Conference on Advanced Concepts for Intelligent Vision Systems, Poitiers, Sep 24-27, 2018. Cham: Springer, 2018: 620-631. [58] ANCUTI C, ANCUTI C O, TIMOFTE R, et al. O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 754-762. [59] LI B Y, REN W Q, FU D P, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505. [60] ANCUTI C, ANCUTI C O, SBERT M, et al. Dense-Haze: a benchmark for image dehazing with dense-Haze and haze-free images[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 1014-1018. [61] ANCUTI C, ANCUTI C O, VASLUIANU F, et al. NTIRE 2020 challenge on nonhomogeneous dehazing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 2029-2044. [62] ZHANG Y F, DING L, SHARMA G. HazeRD: an outdoor scene dataset and benchmark for single image dehazing[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 3205-3209. [63] ZHANG J, CAO Y, ZHA Z J, et al. Nighttime dehazing with a synthetic benchmark[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 2355-2363. [64] HUANG B H, LI Z, YANG C, et al. Single satellite optical imagery dehazing using SAR image prior based on conditional generative adversarial networks[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 1795-1802. [65] LIN D Y, XU G L, WANG X K, et al. A remote sensing image dataset for cloud removal[EB/OL]. [2023-05-12]. https://arxiv.org/abs/1901.00600. [66] SCHARSTEIN D, HIRSCHMüLLER H, KITAJIMA Y, et al. High-resolution stereo datasets with subpixel-accurate ground truth[C]//Proceedings of the 36th German Conference on Pattern Recognition, Münster, Sep 2-5, 2014. Cham: Sprin-ger, 2014: 31-42. [67] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 746-760. [68] WANG Z, BOVIK A C, SHEIKH R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [69] ZHANG J, CAO Y, FANG S, et al. Fast haze removal for nighttime image using maximum reflectance prior[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7016-7024. [70] LIU Y, YAN Z S, WUA M, et al. Nighttime image dehazing based on variational decomposition model[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-20, 2022. Pis-cataway: IEEE, 2022: 640-649. [71] WU R Q, DUAN Z P, GUO C L, et al. RIDCP: revitalizing real image dehazing via high-quality codebook priors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 17-24, 2023. Piscataway: IEEE, 2023: 22282-22291. [72] YUY K, LIU H, FU M H, et al. A two-branch neural network for non-homogeneous dehazing via ensemble learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 193-202. |
[1] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[2] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[3] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[4] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[5] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[6] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[7] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[8] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[9] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[10] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[11] | CHEN Qian, HONG Zheng, SI Jianpeng. Application Layer Protocol Recognition Incorporating SENet and Transformer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 805-817. |
[12] | SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626. |
[13] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[14] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[15] | WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/