Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (3): 612-626.DOI: 10.3778/j.issn.1673-9418.2306033
• Frontiers·Surveys • Previous Articles Next Articles
SHEN Tong, WANG Shuo, LI Meng, QIN Lunming
Online:
2024-03-01
Published:
2024-03-01
申通,王硕,李孟,秦伦明
SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626.
申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2306033
[1] PEREIRA T D, SHAEVITZ J W, MURTHY M. Quantifying behavior to understand the brain[J]. Nature Neuroscience, 2020, 23(12): 1537-1549. [2] FORKOSH O. Animal behavior and animal personality from a non-human perspective: getting help from the machine[J]. Patterns, 2021, 2(3): 100194. [3] WEI K, KORDING K P. Behavioral tracking gets real[J]. Nature Neuroscience, 2018, 21(9): 1146-1147. [4] XIA F, KHEIRBEK M A. Circuit-based biomarkers for mood and anxiety disorders[J]. Trends in Neurosciences, 2020, 43(11): 902-915. [5] WEBER R Z, MULDERS G, KAISER J, et al. Deep learning-based behavioral profiling of rodent stroke recovery[J]. BMC Biology, 2022, 20(1): 1-19. [6] ANDERSON D J, PERONA P. Toward a science of computational ethology[J]. Neuron, 2014, 84(1): 18-31. [7] 孙秀萍, 王琼, 石哲, 等. 动物行为实验方法学研究的回顾与展望[J]. 中国比较医学杂志, 2018, 28(3): 1-7. SUN X P, WANG Q, SHI Z,et al. Review and prospect of experiment methodology on animal behavior[J]. Chinese Journal of Comparative Medicine, 2018, 28(3): 1-7. [8] TINBERGEN N. On aims and methods of ethology[J]. Zeitschrift für Tierpsychologie, 1963, 20(4): 410-433. [9] BALA M M, VASUNDHARA D N, HARITHA A, et al. Design, development and performance analysis of cognitive assisting aid with multi sensor fused navigation for visually impaired people[J]. Journal of Big Data, 2023, 10(1): 21. [10] TASGAONKAR P P, GARG R D, GARG P K. Vehicle detection and traffic estimation with sensors technologies for intelligent transportation systems[J]. Sensing and Imaging, 2020, 21: 1-28. [11] KOYDEMIR H C, OZCAN A. Wearable and implantable sensors for biomedical applications[J]. Annual Review of Analytical Chemistry, 2018, 11: 127-146. [12] PATEL S, PARK H, BONATO P, et al. A review of wearable sensors and systems with application in rehabilitation[J]. Journal of Neuroengineering and Rehabilitation, 2012, 9(1): 1-17. [13] INTILLE S S, LESTER J, SALLIS J F, et al. New horizons in sensor development[J]. Medicine and Science in Sports and Exercise, 2012, 44: 24-31. [14] PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 4903-4911. [15] LI W, WANG Z, YIN B, et al. Rethinking on multi-stage networks for human pose estimation[J]. arXiv:1901.00148, 2019. [16] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 4724-4732. [17] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 7103-7112. [18] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 466-481. [19] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5693-5703. [20] XU Y, ZHANG J, ZHANG Q, et al. ViTPose: simple vision transformer baselines for human pose estimation[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 38571-38584. [21] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 483-499. [22] CHENG B, XIAO B, WANG J, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020: 5386-5395. [23] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2014: 1653-1660. [24] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society,2017: 7291-7299. [25] ZHENG C, ZHU S, MENDIETA M, et al. 3D human pose estimation with spatial and temporal transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11656-11665. [26] LI W, LIU H, TANG H, et al. MHFormer: multi-hypothesis transformer for 3D human pose estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13147-13156. [27] MOON G, CHANG J Y, LEE K M. Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019: 10133-10142. [28] CHENG Y, WANG B, YANG B, et al. Graph and temporal convolutional networks for 3D multi-person pose estimation in monocular videos[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 1157-1165. [29] CHENG Y, WANG B, YANG B, et al. Monocular 3D multi-person pose estimation by integrating top-down and bottom-up networks[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7649-7659. [30] ZHANG Z, WANG C, QIU W, et al. Adafuse: adaptive multiview fusion for accurate human pose estimation in the wild[J]. International Journal of Computer Vision, 2021, 129: 703-718. [31] MA H, CHEN L, KONG D, et al. Transfusion: cross-view fusion with transformer for 3D human pose estimation[J]. arXiv:2110.09554, 2021. [32] ZHANG Y, SUN P, JIANG Y, et al. Bytetrack: multi-object tracking by associating every detection box[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 1-21. [33] QIU X, SUN X, CHEN Y, et al. Pedestrian detection and counting method based on YOLOv5+DeepSORT[C]//Proceedings of the 4th International Symposium on Power Electronics and Control Engineering, Nanchang, Sep 16-19, 2021: 177-181. [34] AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[J]. arXiv:2206. 14651, 2022. [35] DU Y, ZHAO Z, SONG Y, et al. StrongSORT: make deepsort great again[J]. IEEE Transactions on Multimedia, 2023,25: 8725-8737. [36] WENG S K, KUO C M, TU S K. Video object tracking using adaptive Kalman filter[J]. Journal of Visual Communication & Image Representation, 2006(6): 17. [37] ZHANG L, LI Y, NEVATIA R. Global data association for multi-object tracking using network flows[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8. [38] HE S, LUO H, WANG P, et al. TransReID: transformer-based object re-identification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15013-15022. [39] DICLE C, CAMPS O I, SZNAIER M. The way they move: tracking multiple targets with similar appearance[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2013: 2304-2311. [40] ZHENG L, SHEN L, LU T, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington:IEEE Computer Society, 2015: 1116-1124. [41] 袁姮, 赵肖祎. 流形背景感知的相关滤波目标跟踪[J]. 计算机科学与探索, 2023, 17(6): 1373-1386. YUAN H, ZHAO X Y. Manifold background-aware correlation filter target tracking[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1373-1386. [42] XU T, ZHU X F, WU X J. Learning spatio-temporal discriminative model for affine subspace based visual object tracking[J]. Visual Intelligence, 2023, 1(1): 4. [43] 牛宇辉, 奚峥皓, 薛亚静, 等. 基于光流运动约束马尔可夫随机场改进模型的多目标跟踪算法[J]. 激光与光电子学进展, 2022, 59(2): 8. NIU Y H, XI Z H, XUE Y J, et al. Multi-objective tracking algorithm based on improved model of optical flow motion constrained Markov random field[J]. Laser & Optoelectronics Progress, 2022, 59(2): 8. [44] LEONIDA K L, SEVILLA K V, MANLISES C O. A motion-based tracking system using the Lucas-Kanade optical flow method[C]//Proceedings of the 2022 14th International Conference on Computer and Automation Engineering. Piscataway: IEEE, 2022: 86-90. [45] LIU X L, YU S, FLIERMAN N A, et al. OptiFlex: multi-frame animal pose estimation combining deep learning with optical flow[J]. Frontiers in Cellular Neuroscience, 2021, 15: 621252. [46] DOORNWEERD J E, KOOTSTRA G, VEERKAMP R F, et al. Across-species pose estimation in poultry based on images using deep learning[J]. Frontiers in Animal Science, 2021, 2: 791290. [47] JIANG L, LEE C, TEOTIA D, et al. Animal pose estimation: a closer look at the state-of-the-art, existing gaps and opportunities[J]. Computer Vision and Image Understanding, 2022, 222: 103483. [48] ARNK?RN B, SCHOELER S, ULLAH M, et al. Deep learning based multiple animal pose estimation[J]. Electronic Imaging, 2022, 34(6): 1-6. [49] 何泉, 吴磊, 柳珑. 机器学习在动物行为分析中的应用研究进展[J]. 生命科学研究, 2022, 26(5): 433-440. HE Q, WU L, LIU L. Research progress on the application of machine learning in animal behavior analysis[J]. Chinese Journal of Life Science Research, 2022, 26(5): 433-440. [50] MATHIS M W, MATHIS A. Deep learning tools for the measurement of animal behavior in neuroscience[J]. Current Opinion in Neurobiology, 2020, 60: 1-11. [51] 张红民, 庄旭, 郑敬添, 等. 优化 YOLO 网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249. HANG H M, ZHUANG X, ZHENG J T, et al. Optimizing human abnormal behavior detection method of YOLO network[J]. Computer Engineering and Applications, 2023, 59(7): 242-249. [52] 何儒汉, 熊捷繁, 熊明福. 基于背景自适应学习的行人重识别算法研究[J]. 计算机工程与应用, 2023, 59(7): 126-133. HE R H, XIONG J F, XIONG M F. Research on person re-identification based on background adaptive learning[J]. Computer Engineering and Applications, 2023, 59(7): 126-133. [53] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177. HE J, GUO Z L, LIU L Y, et al. Wearable human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177. [54] NAIK H, CHAN A H H, YANG J, et al. 3D-POP—an automated annotation approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based motion capture[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 21274-21284. [55] LAUER J, ZHOU M, YE S, et al. Multi-animal pose estimation, identification and tracking with DeepLabCut[J]. Nature Methods, 2022, 19(4): 496-504. [56] GRAVING J M, CHAE D, NAIK H, et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning[J]. eLife, 2018: e47994. [57] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4700-4708. [58] ZENG F, DONG B, ZHANG Y, et al. MOTR: end-to-end multiple-object tracking with transformer[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 659-675. [59] PEREIRA T D, TABRIS N, MATSLIAH A, et al. SLEAP: a deep learning system for multi-animal pose tracking[J]. Nature Methods, 2022, 19(4): 486-495. [60] MIHAJLOVIC M, ZHANG Y, BLACK M J, et al. LEAP: learning articulated occupancy of people[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10461-10471. [61] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [62] HU Y, FERRARIO C R, MAITLAND A D, et al. LabGym: quantification of user-defined animal behaviors using learning-based holistic assessment[J]. Cell Reports Methods, 2023, 3(3). [63] 田皓宇, 马昕, 李贻斌. 基于骨架信息的异常步态识别方法[J]. 吉林大学学报(工学版), 2022, 52(4): 725-737. TIAN H Y, MA X, LI Y B. Abnormal gait recognition method based on skeleton information[J]. Journal of Jilin University (Engineering Science), 2022, 52(4): 725-737. [64] SHEPPARD K, GARDIN J, SABNIS G S, et al. Gait-level analysis of mouse open field behavior using deep learning-based pose estimation[J]. bioRxiv, 2020. DOI: 10.1101/2020. 12.29.424780. [65] SEGALIN C, WILLIAMS J, KARIGO T, et al. The mouse action recognition system (MARS) software pipeline for automated analysis of social behaviors in mice[J]. eLife, 2021, 10: e63720. [66] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 2366-2374. [67] PéREZ-ESCUDERO A, VICENTE-PAGE J, HINZ R C, et al. idTracker: tracking individuals in a group by automatic identification of unmarked animals[J]. Nature Methods, 2014, 11(7): 743-748. [68] RODRIGUEZ A, ZHANG H, KLAMINDER J, et al. ToxTrac: a fast and robust software for tracking organisms[J]. Methods in Ecology and Evolution, 2018, 9(3): 460-464. [69] ROMERO-FERRERO F, BERGOMI M G, HINZ R C, et al. Idtracker.ai: tracking all individuals in small or large collectives of unmarked animals[J]. Nature Methods, 2019, 16(2): 179-182. [70] XU Z, CHENG X E. Zebrafish tracking using convolutional neural networks[J]. Scientific Reports, 2017, 7(1): 42815. [71] BORGMEIER C, LOMAN S L, STRICKLAND-COHEN M K. ABC tracker: increasing teacher capacity for assessing student behavior[J]. Beyond Behavior, 2017, 26(3): 113-123. [72] SCHWEIHOFF J F, LOSHAKOV M, PAVLOVA I, et al. DeepLabStream enables closed-loop behavioral experiments using deep learning-based markerless, real-time posture detection[J]. Communications Biology, 2021, 4(1): 130. [73] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778. [74] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87. WANG S C, HUANG K, CHEN Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. [75] MARSHALL J D, ALDARONDO D E, DUNN T W, et al. Continuous whole-body 3D kinematic recordings across the rodent behavioral repertoire[J]. Neuron, 2021, 109(3): 420-437. [76] SCHNEIDER A, ZIMMERMANN C, ALYAHYAY M, et al. 3D pose estimation enables virtual head fixation in freely moving rats[J]. Neuron, 2022, 110(13): 2080-2093. [77] NATH T, MATHIS A, CHEN A C, et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors[J]. Nature Protocols, 2019, 14(7): 2152-2176. [78] GüNEL S, RHODIN H, MORALES D, et al. DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult drosophila[J]. eLife, 2019, 8: e48571. [79] HUANG K, HAN Y, CHEN K, et al. A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping[J]. Nature Communications, 2021, 12(1): 1-14. [80] HAN Y, HUANG K, CHEN K, et al. MouseVenue3D: a markerless three-dimension behavioral tracking system for matching two-photon brain imaging in free-moving mice[J]. Neuroscience Bulletin, 2022, 38(3): 303-317. [81] LI T, SEVERSON K S, WANG F, et al. Improved 3D markerless mouse pose estimation using temporal semi-supervision[J]. International Journal of Computer Vision, 2023, 131(6): 1389-1405. [82] QIU H, WANG C, WANG J, et al. Cross view fusion for 3D human pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4342-4351. [83] SHUKLA S, ARAC A. A step-by-step implementation of DeepBehavior, deep learning toolbox for automated behavior analysis[J]. Journal of Visualized Experiments, 2020, 156: e60763. [84] BALA P C, EISENREICH B R, YOO S B M, et al. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio[J]. Nature Communications, 2020, 11(1): 4560. [85] KARASHCHUK P, RUPP K L, DICKINSON E S, et al. Anipose: a toolkit for robust markerless 3D pose estimation[J]. Cell Reports, 2021, 36(13): 109730. [86] FU H, GONG M, WANG C, et al. Deep ordinal regression network for monocular depth estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 2002-2011. [87] DUNN T W, MARSHALL J D, SEVERSON K S, et al. Geometric deep learning enables 3D kinematic profiling across species and environments[J]. Nature Methods, 2021, 18(5): 564-573. [88] GOSZTOLAI A, GüNEL S, LOBATO-RíOS V, et al. LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals[J]. Nature Methods, 2021, 18(8): 975-981. [89] ZIMMERMANN C, SCHNEIDER A, ALYAHYAY M, et al. FreiPose: a deep learning framework for precise animal motion capture in 3D spaces[J]. bioRxiv, 2020. DOI: 10.1101/2020.02.27.967620. [90] ZUFFI S, KANAZAWA A, JACOBS D W, et al. 3D menagerie: modeling the 3D shape and pose of animals[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 6365-6373. [91] LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): 1-16. [92] YU H, XU Y, ZHANG J, et al. Ap-10k: a benchmark for animal pose estimation in the wild[J]. arXiv:2108.12617, 2021. [93] LI S, LI J, TANG H, et al. ATRW: a benchmark for Amur tiger re-identification in the wild[J]. arXiv:1906.05586, 2019. [94] CAO J, TANG H, FANG H S, et al. Cross-domain adaptation for animal pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9498-9507. [95] KHOSLA A, JAYADEVAPRAKASH N, YAO B, et al. Novel dataset for fine-grained image categorization: Stanford dogs[C]//Proceedings of the 2011 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop on Fine-Grained Visual Categorization. Piscataway: IEEE, 2011: 1646-1653. [96] BIGGS B, BOYNE O, CHARLES J, et al. Who left the dogs out? 3D animal reconstruction with expectation maximization in the loop[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 195-211. [97] NG X L, ONG K E, ZHENG Q, et al. Animal kingdom: a large and diverse dataset for animal behavior understanding[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 19023-19034. [98] DEL PERO L, RICCO S, SUKTHANKAR R, et al. Articulated motion discovery using pairs of trajectories[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 2151-2160. [99] DEL PERO L, RICCO S, SUKTHANKAR R, et al. Behavior discovery and alignment of articulated object classes from unstructured video[J]. International Journal of Computer Vision, 2017, 121: 303-325. [100] MATHIS A, BIASI T, SCHNEIDER S, et al. Pretraining boosts out-of-domain robustness for pose estimation[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1859-1868. [101] SUN J J, KARIGO T, CHAKRABORTY D, et al. The multi-agent behavior dataset: mouse dyadic social interactions[J]. arXiv:2104.02710, 2021. [102] BIGGS B, RODDICK T, FITZGIBBON A, et al. Creatures great and SMAL: recovering the shape and motion of animals from video[C]//Proceedings of the 14th Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham:Springer, 2019: 3-19. [103] PEDERSEN M, HAURUM J B, BENGTSON S H, et al. 3D-ZEF: a 3D zebrafish tracking benchmark dataset[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2426-2436. [104] ZUFFI S, KANAZAWA A, BERGER-WOLF T, et al. Three-D Safari: learning to estimate zebra pose, shape, and texture from images “in the wild”[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5359-5368. [105] MU J, QIU W, HAGER G D, et al. Learning from synthetic animals[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12386-12395. [106] YANG Y, RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2878-2890. [107] CHEN C H, RAMANAN D. 3D human pose estimation= 2D pose estimation+matching[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 7035-7043. [108] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88: 303-338. [109] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [110] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2014: 3686-3693. [111] ANDRILUKA M, IQBAL U, INSAFUTDINOV E, et al. Posetrack: a benchmark for human pose estimation and tracking[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 5167-5176. [112] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1325-1339. [113] MA N, ZHANG X, ZHENG H T, et al. ShuffleNET V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 116-131. [114] YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10440-10450. [115] WANG Y, LI M, CAI H, et al. Lite pose: efficient architecture design for 2D human pose estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13126-13136. [116] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 2818-2826. |
[1] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[2] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[3] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[4] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[5] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[6] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[7] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[8] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[9] | WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319. |
[10] | WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang. Review of Bare Footprint Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 44-57. |
[11] | GAO Jie, ZHAO Xinxin, YU Jian, XU Tianyi, PAN Li, YANG Jun, YU Mei, LI Xuewei. Counting Method Based on Density Graph Regression and Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 127-137. |
[12] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
[13] | ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074. |
[14] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[15] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/