Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (2): 301-319.DOI: 10.3778/j.issn.1673-9418.2309033
• Frontiers·Surveys • Previous Articles Next Articles
WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming
Online:
2024-02-01
Published:
2024-02-01
王一凡,刘静,马金刚,邵润华,陈天真,李明
WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319.
王一凡, 刘静, 马金刚, 邵润华, 陈天真, 李明. 深度学习在乳腺癌影像学检查中的应用进展[J]. 计算机科学与探索, 2024, 18(2): 301-319.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2309033
[1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48. [2] ZHOU X, LI C, RAHAMAN M M, et al. A comprehensive review for breast histopathology image analysis using classical and deep neural networks[J]. IEEE Access, 2020, 8: 90931-90956. [3] 师金, 梁迪, 李道娟, 等. 全球女性乳腺癌流行情况研究[J]. 中国肿瘤, 2017, 26(9): 683-690. SHI J, LIANG D, LI D J, et al. Epidemiological status of global female breast cancer[J]. China Cancer, 2017, 26(9): 683-690. [4] CRUZ-ROA A, GILMORE H, BASAVANHALLY A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent[J]. Scientific Reports, 2017, 7(1): 1-14. [5] 陈智丽, 高皓, 潘以轩, 等. 乳腺X线图像计算机辅助诊断技术综述[J]. 计算机工程与应用, 2022, 58(4): 1-21. CHEN Z L, GAO H, PAN Y X, et al. Review of computer aided diagnosis technology in mammography[J]. Computer Engineering and Applications, 2022, 58(4): 1-21. [6] HAMIDINEKOO A, DENTON E, RAMPUN A, et al. Deep learning in mammography and breast histology, an overview and future trends[J]. Medical Image Analysis, 2018, 47: 45-67. [7] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995(10): 1-14. [8] GAO Y, LIN J, ZHOU Y, et al. The application of traditional machine learning and deep learning techniques in mammography: a review[J]. Frontiers in Oncology, 2023, 13: 1213045. [9] PENGIRAN MOHAMAD D N F, MASHOHOR S, MAHMUD R, et al. Transition of traditional method to deep learning based computer-aided system for breast cancer using automated breast ultrasound system (ABUS) images: a review[J]. Artificial Intelligence Review, 2023, 56(12): 15271-15300. [10] ZHAO X, BAI J W, GUO Q, et al. Clinical applications of deep learning in breast MRI[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2023: 188864. [11] 欧阳汝珊, 林小慧, 马捷. 基于深度学习的乳腺X线摄影的临床应用价值[J]. 国际医学放射学杂志, 2021, 44(6): 673-677. OUYANG R S, LIN X H, MA J. Clinical value of deep learning-based mammography[J]. International Journal of Medical Radiology, 2021, 44(6): 673-677. [12] 张晓栋, 张光. 基于磁共振图像的深度学习方法在乳腺癌中的研究进展[J]. 临床放射学杂志, 2023, 42(7): 1197-1200. ZHANG X D, ZHANG G. Research progress of deep learning method based on MRI in breast cancer[J]. Journal of Clinical Radiology, 2023, 42(7): 1197-1200. [13] 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. CACA guideline for breast cancer(2021)[J]. China Oncology, 2021, 31(10): 954-1040. [14] MICHELL M J, IQBAL A, WASAN R K, et al. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis[J]. Clinical Radiology, 2012, 67(10): 976-981. [15] PISANO E D, GATSONIS C, HENDRICK E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening[J]. New England Journal of Medicine, 2005, 353(17): 1773-1783. [16] HEDDSON B, R?NNOW K, OLSSON M, et al. Digital versus screen-film mammography: a retrospective comparison in a population-based screening program[J]. European Journal of Radiology, 2007, 64(3): 419-425. [17] 戴东. 国产乳腺专用PET(PEM)对乳腺癌诊断价值的临床研究[D]. 天津: 天津医科大学, 2016. DAI D. The clinical study of domestic dedicated positron emission mammography in the diagnosis of breast cancer[D]. Tianjin: Tianjin Medical University, 2016. [18] SKAANE P, BANDOS A I, GULLIEN R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program[J]. Radiology, 2013, 267(1): 47-56. [19] BURT J R, TOROSDAGLI N, KHOSRAVAN N, et al. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks[J]. The British Journal of Radiology, 2018, 91(1089): 20170545. [20] SHARMA S, MEHRA R. Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight[J]. Journal of Digital Imaging, 2020, 33: 632-654. [21] HEATH M, BOWYER K, KOPANS D, et al. Current status of the digital database for screening mammography[J]. Digital Mammography, 1998, 13: 457-460. [22] 中国抗癌协会乳腺癌诊治指南与规范(2019年版)[J]. 中国癌症杂志, 2019, 29(8): 609-680. CACA guideline for breast cancer(2019)[J]. China Oncology, 2019, 29(8): 609-680. [23] LEE R S, GIMENEZ F, HOOGI A, et al. A curated mammography data set for use in computer-aided detection and diagnosis research[J]. Scientific Data, 2017, 4(1): 1-9. [24] SUCKLING J,PARKER J,DANCE D. Mammographic image analysis society (MIAS) database v1.21[EB/OL]. (2021-06-05)[2023-08-02]. https://www.repository.cam.ac.uk/handle/1810/250394. [25] OLIVER A, FREIXENET J, MARTI J, et al. A review of automatic mass detection and segmentation in mammographic images[J]. Medical Image Analysis, 2010, 14(2): 87-110. [26] DOMINGUEZ A R, NANDI A K. Detection of masses in mammograms using enhanced multilevel-thresholding segmentation and region selection based on rank[C]//Proceedings of the 2007 IASTED International Conference on Biomedical Engineering, Innsbruck, Feb 14-16, 2007: 370-375. [27] MOREIRA I C, AMARAL I, DOMINGUES I, et al. Inbreast: toward a full-field digital mammographic database[J]. Academic Radiology, 2012, 19(2): 236-248. [28] MATHEUS B R N, SCHIABEL H. Online mammographic images database for development and comparison of CAD schemes[J]. Journal of Digital Imaging, 2011, 24: 500-506. [29] FITZGERALD R. Error in radiology[J]. Clinical Radiology,2001. DOI: 10.1053/crad.2001.0858. [30] LANDHUIS E. Deep learning takes on tumours[J]. Nature, 2020, 580(7804): 551-554. [31] RIBLI D, HORVáTH A, UNGER Z, et al. Detecting and classifying lesions in mammograms with deep learning[J]. Scientific Reports, 2018, 8(1): 4165. [32] SUN L, SUN H, WANG J, et al. Breast mass detection in mammography based on image template matching and CNN[J]. Sensors, 2021, 21(8): 2855. [33] GARRUCHO L, KUSHIBAR K, JOUIDE S, et al. Domain generalization in deep learning based mass detection in mammography: a large-scale multi-center study[J]. Artificial Intelligence in Medicine, 2022, 132: 102386. [34] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. [35] AL-ANTARI M A, AL-MASNI M A, CHOI M T, et al. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification[J]. International Journal of Medical Informatics, 2018, 117: 44-54. [36] SU Y, LIU Q, XIE W, et al. YOLO-LOGO: a transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms[J]. Computer Methods and Programs in Biomedicine, 2022, 221: 106903. [37] HONJO T, UEDA D, KATAYAMA Y, et al. Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution[J]. European Journal of Radiology, 2022, 154: 110433. [38] UEDA D, YAMAMOTO A, ONODA N, et al. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional data-sets[J]. PLoS One, 2022, 17(3): e0265751. [39] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2980-2988. [40] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 770-778. [41] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2117-2125. [42] BECKER A S, MARCON M, GHAFOOR S, et al. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer[J]. Investigative Radiology, 2017, 52(7): 434-440. [43] RODRíGUEZ-RUIZ A, KRUPINSKI E, MORDANG J J, et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system[J]. Radiology, 2019, 290(2): 305-314. [44] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [45] SOULAMI K B, KAABOUCH N, SAIDI M N, et al. Breast cancer: one-stage automated detection, segmentation, and classification of digital mammograms using UNet model based-semantic segmentation[J]. Biomedical Signal Processing and Control, 2021, 66: 102481. [46] SALAMA W M, ALY M H. Deep learning in mammography images segmentation and classification: automated CNN approach[J]. Alexandria Engineering Journal, 2021, 60(5): 4701-4709. [47] ALKHALEEFAH M, TAN T H, CHANG C H, et al. Connected-SegNets: a deep learning model for breast tumor Segmentation from X-ray images[J]. Cancers, 2022, 14(16): 4030. [48] AHMED L, IQBAL M M, ALDABBAS H, et al. Images data practices for semantic segmentation of breast cancer using deep neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2020(1). [49] ZHOU K, LI W, ZHAO D. Deep learning-based breast region extraction of mammographic images combining pre-processing methods and semantic segmentation supported by Deeplab v3+[J]. Technology and Health Care, 2022, 30(S1): 173-190. [50] KAVITHA T, MATHAI P P, KARTHIKEYAN C, et al. Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images[J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14: 113-129. [51] KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. [52] MALEBARY S J, HASHMI A. Automated breast mass classification system using deep learning and ensemble learning in digital mammogram[J]. IEEE Access, 2021, 9: 55312-55328. [53] SAMEE N A, ATTEIA G, MESHOUL S, et al. Deep learning cascaded feature selection framework for breast cancer classification: hybrid CNN with univariate-based approach[J]. Mathematics, 2022, 10(19): 3631. [54] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25,Lake Tahoe, Dec 3-6, 2012: 1106-1114. [55] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [56] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9. [57] BACCOUCHE A, GARCIA-ZAPIRAIN B, ELMAGHRABY A S. An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks[J]. Scientific Reports, 2022, 12(1): 12259. [58] CAI H, HUANG Q, RONG W, et al. Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms[J]. Computational and Mathematical Methods in Medicine, 2019: 2717454. [59] T?RYAK? V M. Deep transfer learning to classify mass and calcification pathologies from screen film mammograms[J]. Bitlis Eren üniversitesi Fen Bilimleri Dergisi, 2023, 12(1): 57-65. [60] YAP M H, PONS G, MARTI J, et al. Automated breast ulra-sound lesions detection using convolutional neural networks[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 22(4): 1218-1226. [61] BALAHA H M, SAIF M, TAMER A, et al. Hybrid deep learning and genetic algorithms approach (HMBDLGAHA) for the early ultrasound diagnoses of breast cancer[J]. Neural Computing and Applications, 2022, 34(11): 8671-8695. [62] ZHANG Z, LI Y, WU W, et al. Tumor detection using deep learning method in automated breast ultrasound[J]. Biomedical Signal Processing and Control, 2021, 68: 102677. [63] ZHOU Y, CHEN H, LI Y, et al. 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network[J]. Expert Systems with Applications, 2021, 168: 114410. [64] MALEKMOHAMMADI A, BAREKATREZAEI S, KOZEGAR E, et al. Mass detection in automated 3-D breast ultrasound using a patch Bi-ConvLSTM network[J]. Ultrasonics, 2023, 129: 106891. [65] BYRA M, GALPERIN M, OJEDA-FOURNIER H, et al. Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion[J]. Medical Physics, 2019, 46(2): 746-755. [66] FUJIOKA T, KUBOTA K, MORI M, et al. Virtual interpolation images of tumor development and growth on breast ulra-sound image synthesis with deep convolutional generative adversarial networks[J]. Journal of Ultrasound in Medicine, 2021, 40(1): 61-69. [67] HAN L, HUANG Y, DOU H, et al. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network[J]. Computer Methods and Programs in Biomedicine, 2020, 189: 105275. [68] LI Y, LIU Y, HUANG L, et al. Deep weakly-supervised breast tumor segmentation in ultrasound images with explicit anatomical constraints[J]. Medical Image Analysis, 2022, 76: 102315. [69] ALMAJALID R, SHAN J, DU Y, et al. Development of a deep-learning-based method for breast ultrasound image segmentation[C]//Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications, Orlando, Dec 17-20, 2018. Piscataway: IEEE, 2018: 1103-1108. [70] SANNASI CHAKRAVARTHY S R, RAJAGURU H. SKMAT-U-Net architecture for breast mass segmentation[J]. International Journal of Imaging Systems and Technology, 2022, 32(6): 1880-1888. [71] BYRA M, JAROSIK P, DOBRUCH-SOBCZAK K, et al. Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks[J]. Ultrasonics, 2022, 121: 106682. [72] RAGAB M, ALBUKHARI A, ALYAMI J, et al. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images[J]. Biology, 2022, 11(3): 439. [73] AL-DHABYANI W, GOMAA M, KHALED H, et al. Dataset of breast ultrasound images[J]. Data in Brief, 2020, 28: 104863. [74] HAN S, KANG H K, JEONG J Y, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images[J]. Physics in Medicine & Biology, 2017, 62(19): 7714. [75] KAPLAN E, CHAN W Y, DOGAN S, et al. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images[J]. Medical Engineering & Physics, 2022, 108: 103895. [76] DING W, WANG J, ZHOU W, et al. Joint localization and classification of breast cancer in B-Mode ultrasound imaging via collaborative learning with elastography[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(9): 4474-4485. [77] JABEEN K, KHAN M A, ALHAISONI M, et al. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion[J]. Sensors, 2022, 22(3): 807. [78] RAZA A, ULLAH N, KHAN J A, et al. DeepBreastCancerNet: a novel deep learning model for breast cancer detection using ultrasound images[J]. Applied Sciences, 2023, 13(4): 2082. [79] MAICAS G, CARNEIRO G, BRADLEY A P, et al. Deep reinforcement learning for active breast lesion detection from DCE-MRI[C]//LNCS 10435: Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec, Sep 11-13, 2017. Cham: Springer, 2017: 665-673. [80] ZHOU J, ZHANG Y, CHANG K T, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. Journal of Magnetic Resonance Imaging, 2020, 51(3): 798-809. [81] DAIMIEL NARANJO I, GIBBS P, REINER J S, et al. Breast lesion classification with multiparametric breast MRI using radiomics and machine learning: a comparison with radiologists’ performance[J]. Cancers, 2022, 14(7): 1743. [82] ADACHI M, FUJIOKA T, MORI M, et al. Detection and dig-nosis of breast cancer using artificial intelligence based assessment of maximum intensity projection dynamic contrast-enhanced magnetic resonance images[J]. Diagnostics, 2020, 10(5): 330. [83] AYATOLLAHI F, SHOKOUHI S B, MANN R M, et al. Auto-matic breast lesion detection in ultrafast DCE-MRI using deep learning[J]. Medical Physics, 2021, 48(10): 5897-5907. [84] ZHANG Y, LIU Y L, NIE K, et al. Deep learning-based auto-matic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification[J]. Academic Radiology, 2023, 30(S2): S161-S171. [85] ZHANG J, SAHA A, ZHU Z, et al. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics[J]. IEEE Transactions on Medical Imaging, 2018, 38(2): 435-447. [86] LU W, WANG Z, HE Y, et al. Breast cancer detection based on merging four modes MRI using convolutional neural networks[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing , Brighton, May 12-17, 2019. Piscataway: IEEE, 2019: 1035-1039. [87] YUE W, ZHANG H, ZHOU J, et al. Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging[J]. Frontiers in Oncology, 2022. DOI: 10.3389/fonc.2022.984626. [88] LIU X, ZHANG Y, JING H, et al. Ore image segmentation method using U-Net and Res_Unet convolutional networks[J]. RSC Advances, 2020, 10(16): 9396-9406. [89] CARVALHO E D, SILVA R R V, MATHEW M J, et al. Tumor segmentation in breast DCE-MRI slice using deep learning methods[C]//Proceedings of the 2021 IEEE Symposium on Computers and Communications, Athens, Sep 5-8, 2021. Piscataway: IEEE, 2021: 1-6. [90] BOUCHEBBAH F, SLIMANI H. 3D automatic levels propagation approach to breast MRI tumor segmentation[J]. Expert Systems with Applications, 2021, 165: 113965. [91] LIU M Z, SWINTELSKI C, SUN S, et al. Weakly supervised deep learning approach to breast MRI assessment[J]. Academic Radiology, 2022, 29: S166-S172. [92] JING X, WIELEMA M, CORNELISSEN L J, et al. Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time[J]. European Radiology, 2022, 32(12): 8706-8715. [93] VERBURG E, VAN GILS C H, VAN DER VELDEN B H M, et al. Deep learning for automated triaging of 4581 breast MRI examinations from the DENSE trial[J]. Radiology, 2022, 302(1): 29-36. [94] ZHU Z, ALBADAWY E, SAHA A, et al. Deep learning for identifying radiogenomic associations in breast cancer[J]. Computers in Biology and Medicine, 2019, 109: 85-90. [95] ZHANG Y, CHEN J H, LIN Y, et al. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers[J]. European Radiology, 2021, 31: 2559-2567. [96] MORRIS E A, COMSTOCK C E, LEE C H, et al. ACR BI-RADS? magnetic resonance imaging[J]. ACR BI-RADS? Atlas, Breast Imaging Reporting and Data System, 2013, 5. [97] GIESS C S, YEH E D, RAZA S, et al. Background parenchymal enhancement at breast MR imaging: normal patterns, diagnostic challenges, and potential for false-positive and false-negative interpretation[J]. Radiographics, 2014, 34(1): 234-247. [98] BORKOWSKI K, ROSSI C, CIRITSIS A, et al. Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach[J]. Medicine, 2020, 99(29): e21243. [99] ESKREIS-WINKLER S, SUTTON E J, D’ALESSIO D, et al. Breast MRI background parenchymal enhancement categorization using deep learning: outperforming the radiologist[J]. Journal of Magnetic Resonance Imaging, 2022, 56(4): 1068-1076. [100] MORI M, FUJIOKA T, KATSUTA L, et al. Diagnostic performance of time-of-flight PET/CT for evaluating nodal metastasis of the axilla in breast cancer[J]. Nuclear Medicine Communications, 2019, 40(9): 958-964. [101] ISHIBA T, NAKAGAWA T, SATO T, et al. Efficiency of fluorodeoxyglucose positron emission tomography/computed tomography to predict prognosis in breast cancer patients received neoadjuvant chemotherapy[J]. SpringerPlus, 2015, 4(1): 1-9. [102] TAKAHASHI K, FUJIOKA T, OYAMA J, et al. Deep learning using multiple degrees of maximum-intensity projection for PET/CT image classification in breast cancer[J]. Tomography, 2022, 8(1): 131-141. [103] WEBER M, KERSTING D, UMUTLU L, et al. Just another “Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48: 3141-3150. [104] MOREAU N, ROUSSEAU C, FOURCADE C, et al. Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer[C]//Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Jul 20-24, 2020. Piscataway: IEEE, 2020: 1532-1535. [105] ZHANG Z, XIE Y, XING F, et al. MDNET: a semantically and visually interpretable medical image diagnosis network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6428-6436. |
[1] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[2] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[3] | SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626. |
[4] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[5] | WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang. Review of Bare Footprint Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 44-57. |
[6] | GAO Jie, ZHAO Xinxin, YU Jian, XU Tianyi, PAN Li, YANG Jun, YU Mei, LI Xuewei. Counting Method Based on Density Graph Regression and Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 127-137. |
[7] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
[8] | ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074. |
[9] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[10] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[11] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[12] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[13] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[14] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[15] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/