Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (7): 1705-1724.DOI: 10.3778/j.issn.1673-9418.2310064
• Frontiers·Surveys • Previous Articles Next Articles
LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong
Online:
2024-07-01
Published:
2024-06-28
利建铖,曹路,何锡权,廖军红
LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724.
利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2310064
[1] CHHIKARA B S, PARANG K. Global cancer statistics 2022: the trends projection analysis[J]. Chemical Biology Letters, 2023, 10(1): 451. [2] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. [3] WU G X, RAZ D J. Lung cancer screening[J]. Lung Cancer: Treatment and Research, 2016, 170: 1-23. [4] 李祥霞, 李彬, 田联房, 等. 基于放射影像组学和随机森林算法的肺结节良恶性分类[J]. 华南理工大学学报(自然科学版), 2018, 46(8): 72-80. LI X X, LI B, TIAN L F, et al. Classification of benign and malignant pulmonary nodules based on radiomics and random forests algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(8): 72-80. [5] DHARA A K, MUKHOPADHYAY S, DUTTA A, et al. A combination of shape and texture features for classification of pulmonary nodules in lung CT images[J]. Journal of Digital Imaging, 2016, 29: 466-475. [6] 马圆, 田思佳, 冯巍, 等. 基于肺部PET/CT图像不同纹理特征的K最近邻分类器[J]. 北京生物医学工程, 2018, 37(1): 57-61. MA Y, TIAN S J, FENG W, et al. K-nearest neighbor classifier based on different texture features of pulmonary nodules from PET/CT images analysis[J]. Beijing Biomedical Engineering, 2018, 37(1): 57-61. [7] OROZCO H M, VILLEGAS O O V, DOMíNGUEZ H J O, et al. Lung nodule classification in CT thorax images using support vector machines[C]//Proceedings of the 2013 12th Mexican International Conference on Artificial Intelligence, Mexico, Nov 24-30, 2013. Washington: IEEE Computer Society, 2013: 277-283. [8] TARTAR A, KILI? N, AKAN A. A new method for pulmonary nodule detection using decision trees[C]//Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Jul 3-7, 2013. Piscataway: IEEE, 2013: 7355-7359. [9] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [10] SUN W, ZHENG B, QIAN W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis[J]. Computers in Biology and Medicine, 2017, 89: 530-539. [11] HUANG H, WU R, LI Y, et al. Self-supervised transfer learning based on domain adaptation for benign-malignant lung nodule classification on thoracic CT[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(8): 3860-3871. [12] MASOOD A, YANG P, SHENG B, et al. Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 8: 1-13. [13] TANG N, ZHANG R, WEI Z, et al. Improving the performance of lung nodule classification by fusing structured and unstructured data[J]. Information Fusion, 2022, 88: 161-174. [14] TOMASSINI S, FALCIONELLI N, SERNANI P, et al. Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: a survey[J]. Computers in Biology and Medicine, 2022, 146: 105691. [15] NASEER I, AKRAM S, MASOOD T, et al. Lung cancer classification using modified U-Net based Lobe segmentation and nodule detection[J]. IEEE Access, 2023, 11: 60279-60291. [16] NAIK A, EDLA D R, DHARAVATH R. A deep feature concatenation approach for lung nodule classification[C]//Proceedings of the 2021 International Conference on Machine Learning and Big Data Analytics, Patna, Mar 29-30, 2021. Cham: Springer, 2022: 213-226. [17] AGARWAL A, PATNI K, RAJESWARI D. Lung cancer detection and classification based on Alexnet CNN[C]//Proceedings of the 2021 6th International Conference on Communication and Electronics Systems, Coimbatre, Jul 8-10, 2021. Piscataway: IEEE, 2021: 1390-1397. [18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-07-25]. https://arxiv.org/abs/1409.1556. [19] SAIKIA T, KUMAR R, KUMAR D, et al. An automatic lung nodule classification system based on hybrid transfer learning approach[J]. SN Computer Science, 2022, 3(4): 272. [20] 王卫兵, 王卓, 徐倩, 等. 基于三维卷积神经网络的肺结节分类[J]. 哈尔滨理工大学学报, 2021, 26(4): 87-93. WANG W B, WANG Z, XU Q, et al. Lung nodule classification based on 3D convolutional neural network[J]. Journal of Harbin University of Science and Technology, 2021, 26(4): 87-93. [21] AL-HUSEINY M S, SAJIT A S. Transfer learning with GoogLeNet for detection of lung cancer[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2021, 22(2): 1078-1086. [22] BRUNTHA P M, DHANASEKAR S, AHMED L J, et al. Inves-tigation of deep features in lung nodule classification[C]//Proceedings of the 2022 6th International Conference on Devices, Circuits and Systems, Coimbatore, Apr 21-22, 2022. Piscataway: IEEE, 2022: 67-70. [23] DODIA S, BASAVA A, PADUKUDRU ANAND M. A novel receptive field-regularized V-net and nodule classification network for lung nodule detection[J]. International Journal of Imaging Systems and Technology, 2022, 32(1): 88-101. [24] WU R, HUANG H. Multi-scale multi-view model based on ensemble attention for benign-malignant lung nodule classification on chest CT[C]//Proceedings of the 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Beijing, Nov 5-7, 2022. Piscataway: IEEE, 2022: 1-6. [25] LIU D, LIU F, TIE Y, et al. Res-trans networks for lung nodule classification[J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17(6): 1059-1068. [26] BRUNTHA P M, PANDIAN S I A, ANITHA J, et al. A novel hybridized feature extraction approach for lung nodule classification based on transfer learning technique[J]. Journal of Medical Physics, 2022, 47(1): 1-9. [27] HALDER A, DEY D. Atrous convolution aided integrated framework for lung nodule segmentation and classification[J]. Biomedical Signal Processing and Control, 2023, 82: 104527. [28] 叶枫, 王路遥, 洪卫, 等. 基于SE-CapsNet的肺结节良恶性诊断研究[J]. 中国生物医学工程学报, 2021, 40(1): 71-80. YE F, WANG L Y, HONG W, et al. Benign and malignant diagnosis of pulmonary nodules based on SE-CapsNet[J]. Chinese Journal of Biomedical Engineering, 2021, 40(1): 71-80. [29] NAIK A, EDLA D R, KUPPILI V. Lung nodule classification on computed tomography images using fractalnet[J]. Wireless Personal Communications, 2021, 119: 1209-1229. [30] 曹斌, 杨锋, 马金刚. 深度学习方法在肺结节诊断中的应用[J]. 激光与光电子学进展, 2021, 58(16): 104-117. CAO B, YANG F, MA J G. Application of deep learning methods in diagnosis of lung nodules[J]. Laser & Optoelectronics Progress, 2021, 58(16): 104-117. [31] YAN X, PANG J, QI H, et al. Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: a comparison between 2D and 3D strategies[C]//Proceedings of the 2016 Asian Conference on Computer Vision, Taipei, China, Nov 20-24, 2016. Cham: Springer, 2017: 91-101. [32] KALIYUGARASAN S K, LUNDERVOLD A, LUNDERVOLD A S. Pulmonary nodule classification in lung cancer from 3D thoracic CT scans using fastai and MONAI[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2021, 6(7): 83-89. [33] ZHANG G, LIN L, WANG J. Lung nodule classification in CT images using 3D DenseNet[C]//Proceedings of the 6th International Conference on Electronic Technology and Information Science, Harbin, Jan 8-10, 2021: 012155. [34] HUANG H, LI Y, WU R, et al. Benign-malignant classification of pulmonary nodule with deep feature optimization framework[J]. Biomedical Signal Processing and Control, 2022, 76: 103701. [35] HALDER A, CHATTERJEE S, DEY D. Adaptive morphology aided 2-pathway convolutional neural network for lung nodule classification[J]. Biomedical Signal Processing and Control, 2022, 72: 103347. [36] 尹智贤, 夏克文, 武盼盼. 多模式特征融合网络肺结节良恶性分类方法[J]. 计算机工程与应用, 2023, 59(23): 228-236. YIN Z X, XIA K W, WU P P. Classification of benign and malignant pulmonary nodules by multimodal feature fusion network[J]. Computer Engineering and Applications, 2023, 59(23): 228-236. [37] XIE Y, XIA Y, ZHANG J, et al. Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec, Sep 11-13, 2017. Cham: Springer, 2017: 656-664. [38] LYU J, BI X, LING S H. Multi-level cross residual network for lung nodule classification[J]. Sensors, 2020, 20(10): 2837. [39] ZHANG M, LI H, PAN S, et al. Convolutional neural networks-based lung nodule classification: a surrogate-assisted evolutionary algorithm for hyperparameter optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5): 869-882. [40] MKINDU H, WU L, ZHAO Y, et al. Lung nodule classification of CT images based on the deep learning algorithms[C]//Proceedings of the 2021 5th International Conference on Imaging, Signal Processing and Communications, Kumamoto, Jul 23-25, 2021. Piscataway:IEEE, 2021: 30-34. [41] SHEN S, HAN S X, ABERLE D R, et al. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification[J]. Expert Systems with Applications, 2019, 128: 84-95. [42] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2023, 18(2): 345-362. QI X H, ZHI M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2023, 18(2): 345-362. [43] 匡健, 洪敏杰, 刘星辰, 等. 基于注意力机制的肺结节分类研究[J]. 计算机应用与软件, 2022, 39(1): 163-167. KUANG J, HONG M J, LIU X C, et al. Classification of pulmonary nodules based on attention mechanism[J]. Computer Applications and Software, 2022, 39(1): 163-167. [44] 郭峰, 黄冕, 刘利军, 等. 基于多模型融合方法的肺结节良恶性分类[J]. 光电子·激光, 2021, 32(4): 389-394. GUO F, HUANG M, LIU L J, et al. Multi-model fusion classification method for benign and malignant lung nodules with embedded attention mechanism[J]. Journal of Optoelectronics·Laser, 2021, 32(4): 389-394. [45] 杨杨, 李晓琴, 韩振波, 等. 基于三维多视角挤压激励卷积神经网络的肺结节良恶性分类研究[J]. 生物医学工程学杂志, 2022, 39(3): 452-461. YANG Y, LI X Q, HAN Z B, et al. Research on classification of benign and malignant lung nodules based on three dimensional multi-view squeeze-and-excitation convolutional neural network[J]. Journal of Biomedical Engineering, 2022, 39(3): 452-461. [46] RICKMANN A M, ROY A G, SARASUA I, et al. ‘Project & excite’ modules for segmentation of volumetric medical scans[C]//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019: 39-47. [47] 费熳熳, 陈春晓, 王亮, 等. 基于MDRA-net的肺结节良恶性分类方法[J]. 激光与光电子学进展, 2023, 60(4): 402-406. FEI M M, CHEN C X, WANG L, et al. Classification method of benign and malignant pulmonary nodules based on MDRA-net[J]. Laser & Optoelectronics Progress, 2023, 60(4): 402-406. [48] 刘雲, 王一达, 张成秀, 等. 基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J]. 中国医学物理学杂志, 2022, 39(11): 1441-1447. LIU Y, WANG Y D, ZHANG C X, et al. Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J]. Chinese Journal of Medical Physics, 2022, 39(11): 1441-1447. [49] 丁其川, 王力, 刘成. 融合长距离信道注意力与病理特征的肺结节分类[J]. 东北大学学报(自然科学版), 2023, 44(4): 476-485. DING Q C, WANG L, LIU C. Classification of pulmonary nodule by combining long-distance channel attention and pathological feature[J]. Journal of Northeastern University (Natural Science), 2023, 44(4): 476-485. [50] 张琮昊, 迟子秋, 王占全, 等. 基于移动窗口注意力机制和编码解码器的肺结节分类方法[J]. 大连工业大学学报, 2024, 43(1): 73-78. ZHANG C H, CHI Z Q, WANG Z Q, et al. Pulmonary nodule classification method based on shifted window attention and codec[J]. Journal of Dalian Polytechnic University, 2024, 43(1): 73-78. [51] KIM E, KIM S, SEO M, et al. XProtoNet: diagnosis in chest radiography with global and local explanations[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 15719-15728. [52] JAUME G, SONG A H, MAHMOOD F. Integrating context for superior cancer prognosis[J]. Nature Biomedical Engineering, 2022, 6(12): 1323-1325. [53] YI L, ZHANG L, XU X, et al. Multi-label Softmax networks for pulmonary nodule classification using unbalanced and dependent categories[J]. IEEE Transactions on Medical Imaging, 2022, 42(1): 317-328. [54] HERNáNDEZ-RODRíGUEZ J, CABRERO-FRAILE F J, RODRíGUEZ-CONDE M J. Convolutional neural networks for multi-scale lung nodule classification in CT: influence of hyperparameter tuning on performance[J]. TEM Journal, 2022, 11(1): 297-306. [55] SHEN W, ZHOU M, YANG F, et al. Multi-scale convolutional neural networks for lung nodule classification[C]//Proceedings of the 24th International Conference on Information Processing in Medical Imaging, Sleat, Jun 28-Jul 3, 2015. Cham: Springer, 2015: 588-599. [56] LIU K, KANG G. Multiview convolutional neural networks for lung nodule classification[J]. International Journal of Imaging Systems and Technology, 2017, 27(1): 12-22. [57] 张修聪, 刘杰, 张光磊. 基于多尺度迁移学习的肺结节良恶性分类[J]. 现代计算机, 2022, 28(5): 76-81. ZHANG X C, LIU J, ZHANG G L. Classification of benign and malignant lung nodules based on multi-scale transfer learning[J]. Modern Computer, 2022, 28(5): 76-81. [58] KANG G, LIU K, HOU B, et al. 3D multi-view convolutional neural networks for lung nodule classification[J]. PLoS One, 2017, 12(11): e0188290. [59] SHEN W, ZHOU M, YANG F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[J]. Pattern Recognition, 2017, 61: 663-673. [60] 杨建利, 朱德江, 邵嘉俊, 等. 三维多尺度交叉融合网络肺结节分类研究[J]. 计算机工程与应用, 2022, 58(14): 121-125. YANG J L, ZHU D J, SHAO J J, et al. Research on classification of pulmonary nodules by three-dimensional multi-scale cross fusion network[J]. Computer Engineering and Applications, 2022, 58(14): 121-125. [61] DU R, YU W, WANG H, et al. Multi-view active fine-grained visual recognition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision, Paris, Oct 2-6, 2023. Piscataway: IEEE, 2023: 1568-1578. [62] SAHU P, YU D, DASARI M, et al. A lightweight multi-section CNN for lung nodule classification and malignancy estimation[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(3): 960-968. [63] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 11-18, 2015. Washington: IEEE Computer Society, 2015: 945-953. [64] XIE Y, XIA Y, ZHANG J, et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J]. IEEE Transactions on Medical Imaging, 2018, 38(4): 991-1004. [65] ZHAI P, TAO Y, CHEN H, et al. Multi-task learning for lung nodule classification on chest CT[J]. IEEE Access, 2020, 8: 180317-180327. [66] BONAVITA I, RAFAEL-PALOU X, CERESA M, et al. Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline[J]. Computer Methods and Programs in Biomedicine, 2020, 185: 105172. [67] LIU X, HOU F, QIN H, et al. Multi-view multi-scale CNNs for lung nodule type classification from CT images[J]. Pattern Recognition, 2018, 77: 262-275. [68] KIM S, LEE N, LEE J, et al. Heterogeneous graph learning for multi-modal medical data analysis[C]//Proceedings of the 2023 AAAI Conference on Artificial Intelligence, Washington, Feb 7-14, 2023. Menlo Park: AAAI, 2023: 5141-5150. [69] 张帅威, 冯旭鹏, 刘利军, 等. 面向肺结节多语义特征分类的不确定性多任务损失方法[J]. 光电子·激光, 2021, 32(1): 47-55. ZHANG S W, FENG X P, LIU L J, et al. Uncertain multi-task loss method for multi-semantic feature classification of lung nodules[J]. Journal of Optoelectronics·Laser, 2021, 32(1): 47-55. [70] 易乐, 张蕾. 基于辅助监督信号的肺结节良恶性分类[J]. 现代计算机, 2021(16): 88-93. YI L, ZHANG L. Benign-malignant pulmonary nodules classification using auxiliary supervised signals[J]. Modern Computer, 2021(16): 88-93. [71] ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76. [72] SATHYAN H, PANICKER J V. Lung nodule classification using deep ConvNets on CT images[C]//Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies, Bangalore, Jul 10-12, 2018. Piscataway: IEEE, 2018: 1-5. [73] NISHIO M, SUGIYAMA O, YAKAMI M, et al. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning[J]. PLoS One, 2018, 13(7): e0200721. [74] DA NóBREGA R V M, PEIXOTO S A, DA SILVA S P P, et al. Lung nodule classification via deep transfer learning in CT lung images[C]//Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems, Karlstad, Jun 18-21, 2018. Washington: IEEE Computer Society, 2018: 244-249. [75] JAIN S, SALMAN H, KHADDAJ A, et al. A data-based perspective on transfer learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 17-24, 2023. Piscataway: IEEE, 2023: 3613-3622. [76] JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 4037-4058. [77] WU R, LIANG C, LI Y, et al. Self-supervised transfer learning framework driven by visual attention for benign-malignant lung nodule classification on chest CT[J]. Expert Systems with Applications, 2023, 215: 119339. [78] AZMAN M S, ROSSI F, ZULKARNAIN N, et al. Classification of lung nodule CT images using GAN variants and CNN[C]//Proceedings of the 2022 IEEE International Conference on Computing, Kota Kinabalu, Nov 14-16, 2022. Piscataway: IEEE, 2022: 310-315. [79] APOSTOLOPOULOS I D, PAPATHANASIOU N D, PANAYIOTAKIS G S. Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning[J]. Biocybernetics and Biomedical Engineering, 2021, 41(4): 1243-1257. [80] SHI P, YU W, LIU Y, et al. Dual convolutional neural network for lung nodule classification[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, Jul 18-22, 2021. Piscataway: IEEE, 2021: 1-7. [81] 池洪泽, 杨静. 融合多尺度决策的肺结节分类研究[J]. 电子设计工程, 2022, 30(22): 188-193. CHI H Z, YANG J. Classification of pulmonary nodules based on multi-scale decision-making[J]. Electronic Design Engineering, 2022, 30(22): 188-193. [82] Al-SHABI M, SHAK K, TAN M. 3D axial-attention for lung nodule classification[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(8): 1319-1324. [83] CHEN Y, WANG Y, HU F, et al. LDNNET: towards robust classification of lung nodule and cancer using lung dense neural network[J]. IEEE Access, 2021, 9: 50301-50320. [84] MKINDU H, WU L, ZHAO Y, et al. Lung nodule classification of CT images using channel and spatial attention CNN with Bayesian optimization[C]//Proceedings of the 2021 Global Reliability and Prognostics and Health Management, Nanjing, Oct 15-17, 2021. Piscataway: IEEE, 2021: 1-6. [85] NAIK A, EDLA D R. Lung nodule classification using combination of CNN, second and higher order texture features[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(5): 5243-5251. [86] DODIA S, ANNAPPA B, PADUKUDRU M A. A novel artificial intelligence-based lung nodule segmentation and classification system on CT scans[C]//Proceedings of the 2021 International Conference on Computer Vision and Image Processing, Dec 3-5, 2021. Cham: Springer, 2021: 552-564. [87] 曹真, 谢红薇, 张昊, 等. 基于改进DenseNet网络的肺结节检测仿真[J]. 计算机仿真, 2022, 39(4): 459-464. CAO Z, XIE H W, ZHANG H, et al. Simulation of pulmonary nodule detection based on improved DenseNet network[J]. Computer Simulation, 2022, 39(4): 459-464. [88] SAIHOOD A, KARSHENAS H, NILCHI A R N. Deep fusion of gray level co-occurrence matrices for lung nodule classification[J]. PLoS One, 2022, 17(9): e0274516. [89] WU K, PENG B, ZHAI D. Multi-granularity dilated transformer for lung nodule classification via local focus scheme[J]. Applied Sciences, 2022, 13(1): 377. [90] SAHAYA JENIBA J, MILTON A. A multilevel self-attention based segmentation and classification technique using directional hexagonal mixed pattern algorithm for lung nodule detection in thoracic CT image[J]. International Journal of Imaging Systems and Technology, 2022, 32(5): 1496-1510. [91] 李伟铭, 李强, 高艳, 等. 基于多模态PET/CT图像构建良恶性肺结节稀疏编码分类模型[J]. 中国卫生统计, 2023, 40(1): 95-98. LI W M, LI Q, GAO Y, et al. Constructing a sparse coding classification model for benign and malignant pulmonary nodules based on multi-modal PET/CT images[J]. Chinese Journal of Health Statistics, 2023, 40(1): 95-98. [92] BALCI M A, BATRANCEA L M, AKGüLLER ?, et al. A series-based deep learning approach to lung nodule image classification[J]. Cancers, 2023, 15(3): 843. [93] QIAO J, FAN Y, ZHANG M, et al. Ensemble framework based on attributes and deep features for benign-malignant classification of lung nodule[J]. Biomedical Signal Processing and Control, 2023, 79: 104217. [94] DL M, DP M. An Improved convolution neural network and modified regularized K-means-based automatic lung nodule detection and classification[J]. Journal of Digital Imaging, 2023, 36(4): 1431-1446. |
[1] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[2] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
[3] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[4] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[5] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[6] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[7] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[8] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[9] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[10] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[11] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[12] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[13] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[14] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[15] | KAO Wentao, LI Ming, MA Jingang. Review of Application of Convolutional Neural Network in Auxiliary Diagnosis of Colorectal Polyps [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 627-645. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/