
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (4): 854-876.DOI: 10.3778/j.issn.1673-9418.2405019
• Frontiers·Surveys • Previous Articles Next Articles
LIU Zhexu, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao, SHI Jianping
Online:2025-04-01
Published:2025-03-28
刘哲旭,李雷孝,刘东江,杜金泽,林浩,史建平
LIU Zhexu, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao, SHI Jianping. Review of Smart Contract Vulnerability Detection and Repair Research[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876.
刘哲旭, 李雷孝, 刘东江, 杜金泽, 林浩, 史建平. 智能合约漏洞检测与修复研究综述[J]. 计算机科学与探索, 2025, 19(4): 854-876.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2405019
| [1] 董伟良, 刘哲, 刘逵, 等. 智能合约漏洞检测技术综述[J]. 软件学报, 2024, 35(1): 38-62. DONG W L, LIU Z, LIU K, et al. Survey on vulnerability detection technology of smart contracts[J]. Journal of Software, 2024, 35(1): 38-62. [2] 付梦琳, 吴礼发, 洪征, 等. 智能合约安全漏洞挖掘技术研究[J]. 计算机应用, 2019, 39(7): 1959-1966. FU M L, WU L F, HONG Z, et al. Research on vulnerability mining technique for smart contracts[J]. Journal of Computer Applications, 2019, 39(7): 1959-1966. [3] 倪远东, 张超, 殷婷婷. 智能合约安全漏洞研究综述[J]. 信息安全学报, 2020, 5(3): 78-99. NI Y D, ZHANG C, YIN T T. A survey of smart contract vulnerability research[J]. Journal of Cyber Security, 2020, 5(3): 78-99. [4] 童俊成, 赵波. 区块链智能合约漏洞检测与自动化修复综述[J]. 计算机应用, 2023, 43(3): 785-793. TONG J C, ZHAO B. Review on blockchain smart contract vulnerability detection and automatic repair[J]. Journal of Computer Applications, 2023, 43(3): 785-793. [5] 崔展齐, 杨慧文, 陈翔, 等. 智能合约安全漏洞检测研究进展[J]. 软件学报, 2024, 35(5): 2235-2267. CUI Z Q, YANG H W, CHEN X, et al. Research progress of security vulnerability detection of smart contracts[J]. Journal of Software, 2024, 35(5): 2235-2267. [6] 钱鹏, 刘振广, 何钦铭, 等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报, 2022, 33(8): 3059-3085. QIAN P, LIU Z G, HE Q M, et al. Smart contract vulnerability detection technique: a survey[J]. Journal of Software, 2022, 33(8): 3059-3085. [7] LIAO J W, TSAI T T, HE C K, et al. SoliAudit: smart contract vulnerability assessment based on machine learning and fuzz testing[C]//Proceedings of the 2019 6th International Conference on Internet of Things: Systems, Management and Security. Piscataway: IEEE, 2019: 458-465. [8] DURIEUX T, FERREIRA J F, ABREU R, et al. Empirical review of automated analysis tools on 47, 587 Ethereum smart contracts[C]//Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. New York: ACM, 2020: 530-541. [9] GHALEB A, PATTABIRAMAN K. How effective are smart contract analysis tools? Evaluating smart contract static analysis tools using bug injection[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2020: 415-427. [10] ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural networks[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 3283-3290. [11] QIAN P, LIU Z G, YIN Y F, et al. Cross-modality mutual learning for enhancing smart contract vulnerability detection on bytecode[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2220-2229. [12] LIU Z G, QIAN P, YANG J X, et al. Rethinking smart contract fuzzing: fuzzing with invocation ordering and important branch revisiting[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1237-1251. [13] TORRES C F, IANNILLO A K, GERVAIS A, et al. ConFuzzius: a data dependency-aware hybrid fuzzer for smart contracts[C]//Proceedings of the 2021 IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2021: 103-119. [14] CHOI J, KIM D, KIM S, et al. SMARTIAN: enhancing smart contract fuzzing with static and dynamic data-flow analyses[C]//Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2021: 227-239. [15] SO S, HONG S, OH H. SmarTest: effectively hunting vulnerable transaction sequences in smart contracts through language model-guided symbolic execution[C]//Proceedings of the 30th USENIX Security Symposium, 2021: 1361-1378. [16] SO S, LEE M, PARK J, et al. VERISMART: a highly precise safety verifier for ethereum smart contracts[C]//Proceedings of the 2020 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2020: 1678-1694. [17] CHEN W M, SUN Z H, WANG H Y, et al. WASAI: uncovering vulnerabilities in Wasm smart contracts[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2022: 703-715. [18] ZHENG Z B, ZHANG N, SU J Z, et al. Turn the rudder: a beacon of reentrancy detection for smart contracts on ethereum[C]//Proceedings of the 45th International Conference on Software Engineering. New York: ACM, 2023: 295-306. [19] RODLER M, LI W, KARAME G O, et al. EVMPatch: timely and automated patching of ethereum smart contracts[C]//Proceedings of the 30th USENIX Security Symposium, 2021: 1289-1306. [20] TORRES C F, SCHüTTE J, STATE R. Osiris: hunting for integer bugs in ethereum smart contracts[C]//Proceedings of the 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 664-676. [21] QIAN C, HU T Y, LI B X. A BiLSTM-attention model for detecting smart contract defects more accurately[C]//Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security. Piscataway: IEEE, 2022: 53-62. [22] YUAN Y, XIE T Y. SVChecker: a deep learning-based system for smart contract vulnerability detection[C]//Proceedings of the 2022 International Conference on Computer Application and Information Security, 2022: 226-231. [23] HUANG Y H, JIANG B, CHAN W K, et al. EOSFuzzer: fuzzing EOSIO smart contracts for vulnerability detection[C]//Proceedings of the 12th Asia-Pacific Symposium on Internetware. New York: ACM, 2021: 99-109. [24] LUU L, CHU D H, OLICKEL H, et al. Making smart contracts smarter[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 254-269. [25] TSANKOV P, DAN A, DRACHSLER-COHEN D, et al. Securify: practical security analysis of smart contracts[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 67-82. [26] CHEN J C, XIA X, LO D, et al. DefectChecker: automated smart contract defect detection by analyzing EVM bytecode[J]. IEEE Transactions on Software Engineering, 2022, 48(7): 2189-2207. [27] KRUPP J, ROSSOW C, KRUPP J, et al. teEther: gnawing at ethereum to automatically exploit smart contracts[C]//Proceedings of the 27th USENIX Conference on Security Symposium, 2018: 1317-1333. [28] CHEN T, LI X Q, LUO X P, et al. Under-optimized smart contracts devour your money[C]//Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2017: 442- 446. [29] MOSSBERG M, MANZANO F, HENNENFENT E, et al. Manticore: a user-friendly symbolic execution framework for binaries and smart contracts[C]//Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2019: 1186-1189. [30] TORRES C F, STEICHEN M, STATE R, et al. The art of the scam[C]//Proceedings of the 28th USENIX Conference on Security Symposium, 2019: 1591-1607. [31] NIKOLI? I, KOLLURI A, SERGEY I, et al. Finding the greedy, prodigal, and suicidal contracts at scale[C]//Proceedings of the 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 653-663. [32] CONTRO F, CROSARA M, CECCATO M, et al. EtherSolve: computing an accurate control-flow graph from ethereum bytecode[C]//Proceedings of the 2021 IEEE/ACM 29th International Conference on Program Comprehension. Piscataway: IEEE, 2021: 127-137. [33] JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 2018 33rd IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2018: 259-269. [34] LIU C, LIU H, CAO Z, et al. ReGuard: finding reentrancy bugs in smart contracts[C]//Proceedings of the 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion. Piscataway: IEEE, 2018: 65-68. [35] MA F C, FU Y, REN M, et al. V-gas: generating high gas consumption inputs to avoid out-of-gas vulnerability[EB/OL]. [2024-02-16]. https://arxiv.org/abs/1910.02945. [36] ZHANG Q Z, WANG Y Z, LI J R, et al. EthPloit: from fuzzing to efficient exploit generation against smart contracts[C]//Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2020: 116-126. [37] NGUYEN T D, PHAM L H, SUN J, et al. sFuzz: an efficient adaptive fuzzer for solidity smart contracts[C]//Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. New York: ACM, 2020: 778-788. [38] RODLER M, LI W T, KARAME G O, et al. Sereum: protecting existing smart contracts against re-entrancy attacks[EB/OL]. [2024-02-16]. https://arxiv.org/abs/1812.05934. [39] ASHOURI M. Etherolic: a practical security analyzer for smart contracts[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York: ACM, 2020: 353-356. [40] BRENT L, GRECH N, LAGOUVARDOS S, et al. Ethainter: a smart contract security analyzer for composite vulnerabilities[C]//Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. New York: ACM, 2020: 454-469. [41] QIAN P, HE J T, LU L L, et al. Demystifying random number in ethereum smart contract: taxonomy, vulnerability identification, and attack detection[J]. IEEE Transactions on Software Engineering, 2023, 49(7): 3793-3810. [42] BHARGAVAN K, DELIGNAT-LAVAUD A, FOURNET C, et al. Formal verification of smart contracts[C]//Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. New York: ACM, 2016: 91-96. [43] AMANI S, BéGEL M, BORTIN M, et al. Towards verifying ethereum smart contract bytecode in Isabelle/HOL[C]//Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. New York: ACM, 2018: 66-77. [44] PERMENEV A, DIMITROV D, TSANKOV P, et al. VerX: safety verification of smart contracts[C]//Proceedings of the 2020 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2020: 1661-1677. [45] HILDENBRANDT E, SAXENA M, RODRIGUES N, et al. KEVM: a complete formal semantics of the ethereum virtual machine[C]//Proceedings of the 2018 IEEE 31st Computer Security Foundations Symposium. Piscataway: IEEE, 2018: 204-217. [46] KALRA S, GOEL S, DHAWAN M, et al. ZEUS: analyzing safety of smart contracts[C]//Proceedings of the 2018 Network and Distributed System Security Symposium, 2018: 1-12. [47] FERREIRA J F, CRUZ P, DURIEUX T, et al. SmartBugs: a framework to analyze solidity smart contracts[C]//Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2020: 1349-1352. [48] DI ANGELO M, DURIEUX T, FERREIRA J F, et al. SmartBugs 2.0: an execution framework for weakness detection in ethereum smart contracts[C]//Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2023: 2102-2105. [49] CHEN T, CAO R, LI T, et al. SODA: a generic online detection framework for smart contracts[C]//Proceedings of the 2020 Network and Distributed System Security Symposium, 2020. [50] TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]//Proceedings of the 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2018: 9-16. [51] FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. [52] NORTHCUTT C, JIANG L, CHUANG I. Confident learning: estimating uncertainty in dataset labels[J]. Journal of Artificial Intelligence Research, 2021, 70: 1373-1411. [53] ESHGHIE M, ARTHO C, GUROV D, et al. Dynamic vulnerability detection on smart contracts using machine learning[C]//Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering. New York: ACM, 2021: 305-312. [54] HAO X H, REN W, ZHENG W W, et al. SCScan: a SVM-based scanning system for vulnerabilities in blockchain smart contracts[C]//Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2020: 1598-1605. [55] WANG W, SONG J J, XU G Q, et al. ContractWard: automated vulnerability detection models for ethereum smart contracts[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1133-1144. [56] HUANG Y W, FANG S, LI J W, et al. SmartIntentNN: towards smart contract intent detection[EB/OL]. [2024-02-16]. https://arxiv.org/abs/2211.13670. [57] 张红霞, 王琪, 王登岳, 等. 基于深度学习的区块链蜜罐陷阱合约检测[J]. 通信学报, 2022, 43(1): 194-202. ZHANG H X, WANG Q, WANG D Y, et al. Honeypot contract detection of blockchain based on deep learning[J]. Journal on Communications, 2022, 43(1): 194-202. [58] ASHIZAWA N, YANAI N, CRUZ J P, et al. Eth2Vec: learning contract-wide code representations for vulnerability detection on ethereum smart contracts[C]//Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure. New York: ACM, 2021: 47-59. [59] 刘泽润, 郑红, 邱俊杰. 基于抽象语法树裁剪的智能合约漏洞检测研究[J]. 计算机科学, 2023, 50(4): 317-322. LIU Z R, ZHENG H, QIU J J. Smart contract vulnerability detection based on abstract syntax tree pruning[J]. Computer Science, 2023, 50(4): 317-322. [60] 王友卫, 侯玉栋, 凤丽洲. 基于源码结构和图注意力网络的以太坊蜜罐合约检测方法[J]. 通信学报, 2023, 44(9): 161-172. WANG Y W, HOU Y D, FENG L Z. Honeypot contract detection method for Ethereum based on source code structure and graph attention network[J]. Journal on Communications, 2023, 44(9): 161-172. [61] CHEN D, FENG L, FAN Y Q, et al. Smart contract vulnerability detection based on semantic graph and residual graph convolutional networks with edge attention[J]. Journal of Systems and Software, 2023, 202: 111705. [62] ZENG Q R, HE J H, ZHAO G S, et al. EtherGIS: a vulnerability detection framework for ethereum smart contracts based on graph learning features[C]//Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2022: 1742-1749. [63] CAI J, LI B, ZHANG J L, et al. Combine sliced joint graph with graph neural networks for smart contract vulnerability detection[J]. Journal of Systems and Software, 2023, 195: 111550. [64] LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1296-1310. [65] NGUYEN H H, NGUYEN N M, DOAN H P, et al. MANDO-GURU: vulnerability detection for smart contract source code by heterogeneous graph embeddings[C]//Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2022: 1736-1740. [66] LI N F, LIU Y, LI L N, et al. Smart contract vulnerability detection based on deep and cross network[C]//Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications. Piscataway: IEEE, 2022: 533-536. [67] LUO F, LUO R J, CHEN T, et al. SCVHunter: smart contract vulnerability detection based on heterogeneous graph attention network[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024: 1-13. [68] ZHEN Z X, ZHAO X F, ZHANG J K, et al. DA-GNN: a smart contract vulnerability detection method based on dual attention graph neural network[J]. Computer Networks, 2024, 242: 110238. [69] CAI J, LI B, ZHANG T, et al. Fine-grained smart contract vulnerability detection by heterogeneous code feature learning and automated dataset construction[J]. Journal of Systems and Software, 2024, 209: 111919. [70] GAO Z P, JAYASUNDARA V, JIANG L X, et al. SmartEmbed: a tool for clone and bug detection in smart contracts through structural code embedding[C]//Proceedings of the 2019 IEEE International Conference on Software Maintenance and Evolution. Piscataway: IEEE, 2019: 394-397. [71] HE J X, BALUNOVI? M, AMBROLADZE N, et al. Learning to fuzz from symbolic execution with application to smart contracts[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 531-548. [72] 赵明敏, 杨秋辉, 洪玫, 等. 基于深度学习和信息反馈的智能合约模糊测试方法[J]. 计算机科学, 2023, 50(9): 117-122. ZHAO M M, YANG Q H, HONG M, et al. Smart contract fuzzing based on deep learning and information feedback[J]. Computer Science, 2023, 50(9): 117-122. [73] ZHANG L J, WANG J L, WANG W Z, et al. Smart contract vulnerability detection combined with multi-objective detection[J]. Computer Networks, 2022, 217: 109289. [74] WU Z D, LI S, WANG B, et al. Detecting vulnerabilities in ethereum smart contracts with deep learning[C]//Proceedings of the 2022 4th International Conference on Data Intelligence and Security. Piscataway: IEEE, 2022: 55-60. [75] JIE W Q, CHEN Q, WANG J Q, et al. A novel extended multimodal AI framework towards vulnerability detection in smart contracts[J]. Information Sciences, 2023, 636: 118907. [76] SENDNER C, CHEN H L, FEREIDOONI H, et al. Smarter contracts: detecting vulnerabilities in smart contracts with deep transfer learning[C]//Proceedings of the 2023 Network and Distributed System Security Symposium, 2023. [77] ZHOU K, HUANG J, HAN H G, et al. Smart contracts vulnerability detection model based on adversarial multi-task learning[J]. Journal of Information Security and Applications, 2023, 77: 103555. [78] WU H J, ZHANG Z, WANG S W, et al. Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2021: 378-389. [79] YUAN D W, WANG X H, LI Y, et al. Optimizing smart contract vulnerability detection via multi-modality code and entropy embedding[J]. Journal of Systems and Software, 2023, 202: 111699. [80] ZHANG Z, LEI Y, YAN M, et al. Reentrancy vulnerability detection and localization: a deep learning based two-phase approach[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2022: 1-13. [81] DU M N, LIU N H, HU X. Techniques for interpretable machine learning[J]. Communications of the ACM, 2019, 63(1): 68-77. [82] LIU Y, WANG C, MA Y. DL4SC: a novel deep learning-based vulnerability detection framework for smart contracts[J]. Automated Software Engineering, 2024, 31(1): 24. [83] CHEN Y Z, SUN Z Y, GONG Z H, et al. Improving smart contract security with contrastive learning-based vulnerability detection[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024: 1-11. [84] LE GOUES C, PRADEL M, ROYCHOUDHURY A. Automated program repair[J]. Communications of the ACM, 2019, 62(12): 56-65. [85] LIU K, LI L, KOYUNCU A, et al. A critical review on the evaluation of automated program repair systems[J]. Journal of Systems and Software, 2021, 171: 110817. [86] CHEN Q G, ZHOU T, LIU K, et al. Tips: towards automating patch suggestion for vulnerable smart contracts[J]. Auto-mated Software Engineering, 2023, 30(2): 31. [87] 姜佳君, 陈俊洁, 熊英飞. 软件缺陷自动修复技术综述[J]. 软件学报, 2021, 32(9): 2665-2690. JIANG J J, CHEN J J, XIONG Y F. Survey of automatic program repair techniques[J]. Journal of Software, 2021, 32(9): 2665-2690. [88] FERREIRA TORRES C, JONKER H, STATE R, et al. Elysium: context-aware bytecode-level patching to automatically heal vulnerable smart contracts[C]//Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses. New York: ACM, 2022: 115-128. [89] FANG P C, GAO P, PENG Y, et al. CONTRACTFIX: a framework for automatically fixing vulnerabilities in smart contracts[EB/OL]. [2024-03-14]. https://arxiv.org/abs/2307.08912. [90] ZHANG Y Y, MA S Q, LI J R, et al. SMARTSHIELD: automatic smart contract protection made easy[C]//Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2020: 23-34. [91] NGUYEN T D, PHAM L H, SUN J. SGUARD: towards fixing vulnerable smart contracts automatically[C]//Proceedings of the 2021 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2021: 1215-1229. [92] YU X L, AL-BATAINEH O, LO D, et al. Smart contract repair[J]. ACM Transactions on Software Engineering and Methodology, 2020, 29(4): 1-32. [93] TOLMACH P, LI Y, LIN S W. Property-based automated repair of DeFi protocols[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2022: 1-5. [94] SO S, OH H, SO S, et al. SmartFix: fixing vulnerable smart contracts by accelerating generate-and-verify repair using statistical models[C]//Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2023: 185-197. [95] FENG Z J, FENG Y M, HE H, et al. A bytecode-based integrated detection and repair method for reentrancy vulnerabilities in smart contracts[J]. IET Blockchain, 2024, 4(3): 235-251. [96] SOUD M, QASSE I, LIEBEL G, et al. AutoMESC: automatic framework for mining and classifying ethereum smart contract vulnerabilities and their fixes[C]//Proceedings of the 2023 49th Euromicro Conference on Software Engineering and Advanced Applications. Piscataway: IEEE, 2023: 410-417. [97] HAO Z H, ZHANG B, MAO D H, et al. A novel method using LSTM-RNN to generate smart contracts code templates for improved usability[J]. Multimedia Tools and Applications, 2023, 82(27): 41669-41699. [98] ZHANG Q J, FANG C R, MA Y X, et al. A survey of learning-based automated program repair[J]. ACM Transactions on Software Engineering and Methodology, 2023, 33(2): 1-69. [99] LI Z C, ZHOU Y, GUO S T, et al. SolSaviour: a defending framework for deployed defective smart contracts[C]//Proceedings of the 37th Annual Computer Security Applications Conference. New York: ACM, 2021: 748-760. [100] JIN H, WANG Z L, WEN M, et al. Aroc: an automatic repair framework for on-chain smart contracts[J]. IEEE Transactions on Software Engineering, 2022, 48(11): 4611-4629. [101] ZOU D, HU Y, LI W, et al. mVulPreter: a multi-granularity vulnerability detection system with interpretations[J]. IEEE Transactions on Dependable and Secure Computing, 2022. DOI: 10.1109/TDSC.2022.3199769. |
| [1] | LIU Yong, DENG Xiaohong, LIU Lihui, SHI Yiran, ZHANG Li. EG-DPoS: Optimized DPoS Consensus Algorithm Based on Evolutionary Game [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1379-1394. |
| [2] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [3] | MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581. |
| [4] | LI Kun, LI Bin, ZHU Wenjing, ZHOU Qinglei. Cross-Architecture Vulnerability Detection Combining Semantic and Attribute Feature [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 787-801. |
| [5] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
| [6] | LU Yu, WANG Jingyu, LIU Lixin, WANG Haonan. Auction Mechanism Driven Data Incentive Sharing Solution [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2203-2220. |
| [7] | CHEN Fushi, SHEN Yao, ZHOU Chichun, DING Meng, LI Juhao, ZHAO Dongyue, LEI Yongsheng, PAN Yilun. Review of Unsupervised Learning Gait Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2014-2033. |
| [8] | MENG Zhen, REN Guanyu, WAN Jianxiong, LI Leixiao. Research on Distributed V2V Computation Offloading Method for Internet of Vehicles Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1923-1934. |
| [9] | ZHANG Xuan, LI Leixiao, DU Jinze, SHI Jianping. Overview of Covert Channel Research in Blockchain Environment [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1438-1456. |
| [10] | MIN Jiyuan, LU Tongyu, REN Tingting, CHEN Ruhao. Interpretable Machine Learning Algorithm Based on Rules Ensemble and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1476-1490. |
| [11] | ZI Lingling, CONG Xin. Blockchain Transactions Using Attached Blocks and Discrete Token Negotiation for Delay-Tolerant Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1357-1367. |
| [12] | BAI Yirui, TIAN Ning, LEI Hong, LIU Xuefeng, LU Xiang, ZHOU Yong. Overview of Cross-Chain Identity Authentication Based on DID [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 597-611. |
| [13] | WANG Qun, LI Fujuan, NI Xueli, XIA Lingling, MA Zhuo. Research on Blockchain-Based Inter-Domain Routing Security Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3144-3174. |
| [14] | GAO Chunqi, LI Leixiao, SHI Jianping. Overview of Trusted Authentication and Incentive Mechanisms in Blockchain-Based Internet of Vehicles [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2798-2822. |
| [15] | XIA Lingling, WANG Qun, MA Zhuo, LIANG Guangjun. Research on Application of Blockchain in PKI Security [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2573-2593. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/