Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (4): 901-915.DOI: 10.3778/j.issn.1673-9418.2409061
• Frontiers·Surveys • Previous Articles Next Articles
YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong
Online:
2025-04-01
Published:
2025-03-28
杨思念,曹立佳,杨洋,郭川东
YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915.
杨思念, 曹立佳, 杨洋, 郭川东. 基于机器视觉的PCB缺陷检测算法研究综述[J]. 计算机科学与探索, 2025, 19(4): 901-915.
[1] PARK J H, KIM Y S, SEO H, et al. Analysis of training deep learning models for PCB defect detection[J]. Sensors, 2023, 23(5): 2766. [2] LING Q, ISA N A M. Printed circuit board defect detection methods based on image processing, machine learning and deep learning: a survey[J]. IEEE Access, 2023, 11: 15921-15944. [3] CHEN X, WU Y L, HE X Y, et al. A comprehensive review of deep learning-based PCB defect detection[J]. IEEE Access, 2023, 11: 139017-139038. [4] SANKAR V U, LAKSHMI G, SANKAR Y S. A review of various defects in PCB[J]. Journal of Electronic Testing, 2022, 38(5): 481-491. [5] 吴一全, 赵朗月, 苑玉彬, 等. 基于机器视觉的PCB缺陷检测算法研究现状及展望[J]. 仪器仪表学报, 2022, 43(8): 1-17. WU Y Q, ZHAO L Y, YUAN Y B, et al. Research status and the prospect of PCB defect detection algorithm based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(8): 1-17. [6] CHEN I C, HWANG R, HUANG H C. PCB defect detection based on deep learning algorithm[J]. Processes, 2023, 11(3): 775. [7] ZHOU Y B, YUAN M H, ZHANG J, et al. Review of vision-based defect detection research and its perspectives for printed circuit board[J]. Journal of Manufacturing Systems, 2023, 70: 557-578. [8] TULBURE A A, TULBURE A A, DULF E H. A review on modern defect detection models using DCNNs-deep convolutional neural networks[J]. Journal of Advanced Research, 2022, 35: 33-48. [9] LAKSHMI G, SANKAR V U, SANKAR Y S. A survey of PCB defect detection algorithms[J]. Journal of Electronic Testing, 2023, 39(5): 541-554. [10] ZHANG F, QIAO N S, LI J F. A PCB photoelectric image edge information detection method[J]. Optik, 2017, 144: 642-646. [11] 温悦欣. 基于机器视觉的PCB表面缺陷检测方法研究与系统实现[D]. 成都: 电子科技大学, 2020: 84. WEN Y X. Research and system implementation of PCB surface defect detection method based on machine vision[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 84. [12] 廖鑫婷, 张洁, 吕盛坪. 融合浅层特征和注意力机制的PCB缺陷检测方法[J]. 计算机集成制造系统, 2024, 30(3): 1092-1104. LIAO X T, ZHANG J, LYU S P. Defect detection for PCB by combining shallow features and attention mechanism[J]. Computer Integrated Manufacturing Systems, 2024, 30(3): 1092-1104. [13] LI Y F, LI S Y. Defect detection of bare printed circuit boards based on gradient direction information entropy and uniform local binary patterns[J]. Circuit World, 2017, 43(4): 145-151. [14] WANG S Y, ZHAO Y, WEN L Y. PCB welding spot detection with image processing method based on automatic threshold image segmentation algorithm and mathematical morphology[J]. Circuit World, 2016, 42(3): 97-103. [15] FANG K. Threshold segmentation of PCB defect image grid based on finite difference dispersion for providing accuracy in the IoT based data of smart cities[J]. International Journal of System Assurance Engineering and Management, 2022, 13(1): 121-131. [16] ZHU W B, GU H, SU W M. A fast PCB hole detection method based on geometric features[J]. Measurement Science and Technology, 2020, 31(9): 095402. [17] RAIHAN F, CE W. PCB defect detection USING OPENCV with image subtraction method[C]//Proceedings of the 2017 International Conference on Information Management and Technology. Piscataway: IEEE, 2017: 204-209. [18] ANNABY M H, FOUDA Y M, RUSHDI M A. Improved normalized cross-correlation for defect detection in printed-circuit boards[J]. IEEE Transactions on Semiconductor Manu-facturing, 2019, 32(2): 199-211. [19] REN Z H, FANG F Z, YAN N, et al. State of the art in defect detection based on machine vision[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(2): 661-691. [20] WU H. Solder joint defect classification based on ensemble learning[J]. Soldering & Surface Mount Technology, 2017, 29(3): 164-170. [21] BANSAL M, GOYAL A, CHOUDHARY A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning[J]. Decision Analytics Journal, 2022, 3: 100071. [22] LIAO C T, LEE W H, LAI S H. A flexible PCB inspection system based on statistical learning[J]. Journal of Signal Processing Systems, 2012, 67(3): 279-290. [23] YUK E H, PARK S H, PARK C S, et al. Feature-learning-based printed circuit board inspection via speeded-up robust features and random forest[J]. Applied Sciences, 2018, 8(6): 932. [24] UR REHMAN S, THANG K F, LAI N S. Automated PCB identification and defect-detection system (APIDS)[J]. International Journal of Electrical and Computer Engineering, 2019, 9(1): 297. [25] SONG J D, KIM Y G, PARK T H. SMT defect classification by feature extraction region optimization and machine learning[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5): 1303-1313. [26] CAI N, ZHOU Y, YE Q, et al. IC solder joint inspection via robust principle component analysis[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(2): 300-309. [27] EL BELGHITI ALAOUI N, CASSOU A, TOUNSI P, et al. Using infrared thermal responses for PCBA production tests: feasibility study[J]. Microelectronics Reliability, 2019, 100: 113354. [28] SARKER I H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions[J]. SN Computer Science, 2021, 2(6): 420. [29] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [30] YOU S Y. PCB defect detection based on generative adversarial network[C]//Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering. Piscataway: IEEE, 2022: 557-560. [31] TSAI A C, TSOU C H, WANG J F. EESRGAN: efficient & effective super-resolution generative adversarial network[J]. IETE Technical Review, 2024, 41(2): 200-211. [32] LIU Z H, HE P F, WANG F. PCB defect images super-resolution reconstruction based on improved SRGAN[J]. Applied Sciences, 2023, 13(11): 6786. [33] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. [34] LU Z W, WU C D, CHEN D Y, et al. Overview on image super resolution reconstruction[C]//Proceedings of the 26th Chinese Control and Decision Conference. Piscataway: IEEE, 2014: 2009-2014. [35] AN K, ZHANG Y P. LPViT: a transformer based model for PCB image classification and defect detection[J]. IEEE Access, 2022, 10: 42542-42553. [36] HAN X X, LI R P, WANG B Q, et al. Defect identification of bare printed circuit boards based on Bayesian fusion of multi-scale features[J]. PeerJ Computer Science, 2024, 10: e1900. [37] YU X Y, LI H X, YANG H D. PCB defect detection model based on intrinsic feature decomposition and multilevel fusion against image uncertainty[J]. IEEE Sensors Journal, 2024, 24(12): 19497-19505. [38] LI Y T, GUO J. A VGG-16 based faster RCNN model for PCB error inspection in industrial AOI applications[C]//Proceedings of the 2018 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2018: 1-2. [39] CHEN W, HUANG Z T, MU Q, et al. PCB defect detection method based on transformer-YOLO[J]. IEEE Access, 2022, 10: 129480-129489. [40] LIU Z, HU H, LIN Y T, et al. Swin transformer V2: scaling up capacity and resolution[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11999-12009. [41] 庹冰, 黄丽雯, 唐鑫, 等. 基于YOLOX-WSC的PCB缺陷检测算法研究[J]. 计算机工程与应用, 2023, 59(10): 236-243. TUO B, HUANG L W, TANG X, et al. Research on PCB defect detection algorithm based on YOLOX-WSC[J]. Com-puter Engineering and Applications, 2023, 59(10): 236-243. [42] 苏佳, 贾泽, 秦一畅, 等. 面向工业表面缺陷检测的改进YOLOv8算法[J]. 计算机工程与应用, 2024, 60(14): 187-196. SU J, JIA Z, QIN Y C, et al. Improved YOLOv8 algorithm for industrial surface defect detection[J]. Computer Engineering and Applications, 2024, 60(14): 187-196. [43] YU J B, ZHAO L X, WANG Y S, et al. Defect detection of printed circuit board based on adaptive key-points localization network[J]. Computers & Industrial Engineering, 2024, 193: 110258. [44] ZHANG Y, XIE F, HUANG L, et al. A lightweight one-stage defect detection network for small object based on dual attention mechanism and PAFPN[J]. Frontiers in Physics, 2021, 9:708097. [45] LI J, LI W Y, CHEN Y Q, et al. Research on object detection of PCB assembly scene based on effective receptive field anchor allocation[J]. Computational Intelligence and Neuroscience, 2022(1): 7536711. [46] WANG X, GAO J S, HOU B J, et al. A lightweight modified YOLOX network using coordinate attention mechanism for PCB surface defect detection[J]. IEEE Sensors Journal, 2022, 22(21): 20910-20920. [47] 杨永跃, 夏远超. PCB缺陷检测深度学习算法的精度改进[J]. 电子测量与仪器学报, 2023, 37(5): 11-19. YANG Y Y, XIA Y C. Accuracy improvement of deep learning algorithm for PCB defect detection[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5): 11-19. [48] LIU T H, CAO G Z, HE Z S, et al. Refined defect detector with deformable transformer and pyramid feature fusion for PCB detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 5001111. [49] CHENG G, HAN J W. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. [50] BAI J, REN J J, YANG Y J, et al. Object detection in large-scale remote-sensing images based on time-frequency analysis and feature optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5405316. [51] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. [52] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-06-14]. https://arxiv.org/abs/2004.10934. [53] LU H W, MEHTA D, PARADIS O P, et al. FICS-PCB: a multi-modal image dataset for automated printed circuit board visual inspection[J]. IACR Cryptology ePrint Archive, 2020: 366. [54] PRAMERDORFER C, KAMPEL M. A dataset for computer-vision-based PCB analysis[C]//Proceedings of the 2015 14th IAPR International Conference on Machine Vision Applications. Piscataway: IEEE, 2015: 378-381. [55] MAHALINGAM G, GAY K M, RICANEK K. PCB-METAL: a PCB image dataset for advanced computer vision machine learning component analysis[C]//Proceedings of the 2019 16th International Conference on Machine Vision Applications. Piscataway: IEEE, 2019: 1-5. [56] TANG S L, HE F, HUANG X L, et al. Online PCB defect detector on a new PCB defect dataset[EB/OL]. [2024-06-14]. https://arxiv.org/abs/1902.06197. [57] HUANG W B, WEI P, ZHANG M H, et al. HRIPCB: a challenging dataset for PCB defects detection and classification[J]. The Journal of Engineering, 2020(13): 303-309. [58] HUANG W B, WEI P. A PCB dataset for defects detection and classification[EB/OL]. [2024-06-14]. https://arxiv.org/abs/1901.08204. [59] YU X Y, LYU W T, ZHOU D, et al. ES-Net: efficient scale-aware network for tiny defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3511314. [60] ZHOU G A, YU L J, SU Y X, et al. Lightweight PCB defect detection algorithm based on MSD-YOLO[J]. Cluster Computing, 2024, 27(3): 3559-3573. [61] WANG H D, XIE J, XU X Y, et al. Few-shot PCB surface defect detection based on feature enhancement and multi-scale fusion[J]. IEEE Access, 2022, 10: 129911-129924. [62] ZHANG L X, CHEN J S, CHEN J G, et al. LDD-Net: lightweight printed circuit board defect detection network fusing multi-scale features[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107628. [63] LI C J, QU Z, WANG S Y, et al. A method of defect detection for focal hard samples PCB based on extended FPN model[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 217-227. [64] LIU Q, LIU M, JONATHAN Q M, et al. A real-time anchor-free defect detector with global and local feature enhancement for surface defect detection[J]. Expert Systems with Applications, 2024, 246: 123199. [65] 朱红艳, 李泽平, 赵勇, 等. 基于多尺度融合和可变形卷积PCB缺陷检测算法[J]. 计算机工程与设计, 2022, 43(8): 2188-2196. ZHU H Y, LI Z P, ZHAO Y, et al. PCB defect detection algorithm based on multi-scale fusion and deformable convolution[J]. Computer Engineering and Design, 2022, 43(8): 2188-2196. [66] XIA K W, LV Z L, LIU K, et al. Global contextual attention augmented YOLO with ConvMixer prediction heads for PCB surface defect detection[J]. Scientific Reports, 2023, 13(1): 9805. [67] CHEN G D, XU F, LIU G H, et al. ESDDNet: efficient small defect detection network of workpiece surface[J]. Measurement Science and Technology, 2022, 33(10): 105007. [68] YE M, WANG H, XIAO H. Light-YOLOv5: a lightweight algorithm for improved YOLOv5 in PCB defect detection[C]//Proceedings of the 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms. Piscataway: IEEE, 2023: 523-528. [69] ZHU P K, CAI Y W, LI F, et al. A deep learning method for PCB defect detection based on improved Yolov8[C]//Proceedings of the 2024 International Conference on Computer Vision and Deep Learning. New York: ACM, 2024: 1-7. [70] LI G Y, LIAO X F, SU X C, et al. PCB defect detection based on improved YOLOX algorithm[C]//Proceedings of the 2023 5th International Conference on Electrical Engineering and Control Technologies. Piscataway: IEEE, 2023: 380-384. [71] SHAO R, ZHOU M L, LI M, et al. TD-Net: tiny defect detection network for industrial products[J]. Complex & Intelligent Systems, 2024, 10(3): 3943-3954. [72] XU Y H, HUO H. DSASPP: depthwise separable atrous spatial pyramid pooling for PCB surface defect detection[J]. Electronics, 2024, 13(8): 1490. [73] WU Y X, ZHENG L M, CHEN E Z. EEMNet: an end-to-end efficient model for PCB surface tiny defect detection[J]. International Journal of Machine Learning and Cybernetics, 2024, 15(12): 5579-5594. [74] 陈俊英, 李朝阳, 席月芸, 等. ViT和注意力融合的类别不均衡PCB缺陷检测方法[J]. 仪器仪表学报, 2024, 45(4): 294-306. CHEN J Y, LI Z Y, XI Y Y, et al. ViT and attention fusion for class-imbalanced PCB defect detection[J]. Chinese Journal of Scientific Instrument, 2024, 45(4): 294-306. [75] ZHOU W, LI C Y, YE Z W, et al. An efficient tiny defect detection method for PCB with improved YOLO through a compression training strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2003514. [76] XIAO G S, HOU S L, ZHOU H Y. PCB defect detection algorithm based on CDI-YOLO[J]. Scientific Reports, 2024, 14(1): 7351. [77] TANG J L, LIU S B, ZHAO D X, et al. PCB-YOLO: an improved detection algorithm of PCB surface defects based on YOLOv5[J]. Sustainability, 2023, 15(7): 5963. [78] YUAN Z H, TANG X Y, NING H, et al. LW-YOLO: lightweight deep learning model for fast and precise defect detection in printed circuit boards[J]. Symmetry, 2024, 16(4): 418. [79] YU Z L, WU Y X, WEI B Q, et al. A lightweight and efficient model for surface tiny defect detection[J]. Applied Intelligence, 2023, 53(6): 6344-6353. [80] WAN Y S, GAO L, LI X Y, et al. Semi-supervised defect detection method with data-expanding strategy for PCB quality inspection[J]. Sensors, 2022, 22(20): 7971. [81] DU B W, WAN F, LEI G B, et al. YOLO-MBBi: PCB surface defect detection method based on enhanced YOLOv5[J]. Electronics, 2023, 12(13): 2821. [82] FENG B X, CAI J P. PCB defect detection via local detail and global dependency information[J]. Sensors, 2023, 23(18): 7755. [83] XIE Y F, HU W T, XIE S W, et al. Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15(2): 565-579. [84] YU H Z, LIN Q S, LIU C L. Design and implementation of embedded PCB defect detection system based on FPGA[C]//Proceedings of the 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2023: 530-535. [85] CHEN C L, WU Q M, ZHANG J, et al. U2D2PCB: uncertainty-aware unsupervised defect detection on PCB images using reconstructive and discriminative models[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5017710. [86] 张莹, 邓华宣, 王耀南, 等. 基于多通道特征融合学习的印制电路板小目标缺陷检测[J]. 仪器仪表学报, 2024, 45(5): 10-19. ZHANG Y, DENG H X, WANG Y N, et al. Small defects detection of PCB based on multi-channel feature fusion learning[J]. Chinese Journal of Scientific Instrument, 2024, 45(5): 10-19. [87] 王健, 肖迪, 冯李航, 等. 基于改进YOLOv8s的PCB小目标缺陷检测模型[J/OL]. 计算机工程与应用(2024-08-20)[2024-09-27]. http://kns.cnki.net/kcms/detail/11.2127.tp.20240819. 1152.016.html. WANG J, XIAO D, FENG L H, et al. PCB small target defect detection model based on improved YOLOv8s[J/OL]. Computer Engineering and Applications (2024-08-20)[2024-09-27]. http://kns.cnki.net/kcms/detail/11.2127.tp.20240819. 1152.016.html. [88] BHATTACHARYA A, CLOUTIER S G. End-to-end deep learning framework for printed circuit board manufacturing defect classification[J]. Scientific Reports, 2022, 12(1): 12559. [89] LEI L, LI H X, YANG H D. Multiscale convolution-based probabilistic classification for detecting bare PCB defects[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 3503108. [90] LIM J, LIM J, BASKARAN V M, et al. A deep context learning based PCB defect detection model with anomalous trend alarming system[J]. Results in Engineering, 2023, 17: 100968. [91] CHEN W X, MENG S M, WANG X P. Local and global context-enhanced lightweight CenterNet for PCB surface defect detection[J]. Sensors, 2024, 24(14): 4729. [92] VAKILI E, KARIMIAN G, SHOARAN M, et al. Valid-IoU: an improved IoU-based loss function and its application to detection of defects on printed circuit boards[J]. Multimedia Tools and Applications, 2024. DOI: 10.1007/s11042-024-19482-4. [93] LIU L J, ZHANG Y, KARIMIC H R. Defect detection of printed circuit board surface based on an improved YOLOv8 with FasterNet backbone algorithms[EB/OL]. (2024-08-30)[2024-09-14]. https://www.researchsquare.com/article/rs-4823049/v1. [94] LI Z Y, LI A M, ZHANG Y C, et al. BEW-YOLO: an improved method for PCB defect detection based on YOLOv7[C]//Proceedings of the 2023 IEEE 29th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2023: 268-274. [95] LING Q, ISA N A M. TD-YOLO: a lightweight detection algorithm for tiny defects in high-resolution PCBs[J]. Advanced Theory and Simulations, 2024, 7(4): 2300971. [96] YUAN M H, ZHOU Y B, REN X Y, et al. YOLO-HMC: an improved method for PCB surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2001611. |
[1] | LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo. Review of Deep Learning Applications in Unmanned Aerial Vehicle Remote Sensing Images of Grass Plants [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1157-1176. |
[2] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
[3] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
[4] | WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140. |
[5] | LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin. Dual Graph Attention Model for Multivariate Time Series Anomaly Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064. |
[6] | LIU Zhexu, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao, SHI Jianping. Review of Smart Contract Vulnerability Detection and Repair Research [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876. |
[7] | MENG Xiangfu, SHI Guangqi, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Deep Learning Based Trajectory Similarity Measurement Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 623-644. |
[8] | MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581. |
[9] | LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao. Overview of Applications and Research Directions of Deep Learning Methods for Wind Power Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 602-622. |
[10] | CHEN Chong, ZHU Xiaoyu, WANG Fang, XU Yaqian, ZHANG Wei. Comprehensive Review of Physics-Guided Deep Learning: Advancements, Challenges, and Perspectives [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 277-294. |
[11] | MA Qian, DONG Wu, ZENG Qingtao, ZHANG Yan, LU Likun, ZHOU Ziyi. Review of Retargeting Methods and Assessment of Retargeted Image Objective Quality [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 316-333. |
[12] | CHENG Jialin, YUAN Deyu, SUN Zeyu, CHEN Ziyan. Cross-Network User Identity Linkage Method with Deep Learning Based on SDNE Embedding Representation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 417-428. |
[13] | YANG Meijun, YAO Ruoxia, XIE Juanying. CARFB: Plug-and-Play Object Detection Module [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 223-236. |
[14] | GUO Jialin, ZHI Min, YIN Yanjun, GE Xiangwei. Review of Research on CNN and Visual Transformer Hybrid Models in Image Processing [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 30-44. |
[15] | YANG Chen, XU Hao, ZHU Jiawei, WU Qin, CHAI Zhilei. LightGCNet: Deep Gamut Compression Algorithm Based on Lightweight Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 196-210. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/