Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (2): 316-333.DOI: 10.3778/j.issn.1673-9418.2404047

• Frontiers·Surveys • Previous Articles     Next Articles

Review of Retargeting Methods and Assessment of Retargeted Image Objective Quality

MA Qian, DONG Wu, ZENG Qingtao, ZHANG Yan, LU Likun, ZHOU Ziyi   

  1. Beijing Key Laboratory of Signal and Information Processing for High-End Printing Equipment, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Online:2025-02-01 Published:2025-01-23

图像重定向及客观质量评价方法综述

马倩,董武,曾庆涛,张艳,陆利坤,周子镱   

  1. 北京印刷学院 高端印刷装备信号与信息处理北京市重点实验室,北京 102600

Abstract: The image retargeting technique enhances compatibility across various display devices by adjusting the size and aspect ratio of the generated image. Though current image retargeting methods have achieved significant research advancements, they are still not applicable to all types of display devices. Artificial distortions may arise in image retargeting, reducing the user􀆳s visual experience and necessitating diverse quality evaluation methods to precisely assess the quality of the resulting retargeted image under various distortion types. This paper comprehensively summarizes the current research progress in image retargeting methods and objective quality evaluation techniques. Firstly, this paper provides an overview of retargeting methods, categorizes them into content-aware image retargeting methods and those based on deep learning techniques, and analyzes the advantages and disadvantages of the two types of methods. Subsequently, this paper delineates the attributes of objective quality evaluation methods for image retargeting, which is essential for the optimization and development of image retargeting methods, encompassing approaches grounded in underlying features and those reliant on multi-level features. This paper then delves into detailing the existing three datasets and conducts a comparative analysis of diverse methodologies for the objective quality evaluation of image retargeting. Finally, this paper proposes potential avenues for future research by addressing the current challenges in the image retargeting field.

Key words: image retargeting, quality assessment, deep learning, multi-level feature

摘要: 图像重定向方法通过改变图像的尺寸与宽高比,使生成的图像在不同的显示设备上均有良好的兼容性。当前已有的图像重定向方法虽然已经取得了一定的研究成果,但它们仍不能适用于所有类型的显示设备。在图像重定向过程中易产生人工失真,降低了用户的视觉体验,针对不同的失真类型,需要使用不同的质量评价方法来准确预测重定向结果图像的质量。对目前图像重定向方法及客观质量评价方法的研究进展均进行了较为全面的总结。总结了重定向方法,分为传统的基于内容感知的图像重定向方法和基于深度学习的图像重定向方法,并分析了这两类方法的优缺点;重点阐述了图像重定向客观质量评价方法的特点,包括基于底层特征的方法和基于多层次特征的方法,质量评价方法对图像重定向方法的优化与发展至关重要;列举了现有的三个数据集,并对不同的图像重定向客观质量评价方法的性能进行了分析比较;根据现阶段图像重定向领域存在的问题,对该方向的未来发展趋势进行了展望。

关键词: 图像重定向, 质量评价方法, 深度学习, 多层次特征