Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (2): 316-333.DOI: 10.3778/j.issn.1673-9418.2404047
• Frontiers·Surveys • Previous Articles Next Articles
MA Qian, DONG Wu, ZENG Qingtao, ZHANG Yan, LU Likun, ZHOU Ziyi
Online:
2025-02-01
Published:
2025-01-23
马倩,董武,曾庆涛,张艳,陆利坤,周子镱
MA Qian, DONG Wu, ZENG Qingtao, ZHANG Yan, LU Likun, ZHOU Ziyi. Review of Retargeting Methods and Assessment of Retargeted Image Objective Quality[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 316-333.
马倩, 董武, 曾庆涛, 张艳, 陆利坤, 周子镱. 图像重定向及客观质量评价方法综述[J]. 计算机科学与探索, 2025, 19(2): 316-333.
[1] AVIDAN S, SHAMIR A. Seam carving for content-aware image resizing[J]. ACM Transactions on Graphics, 2007, 26(3): 10. [2] AVIDAN S, SHAMIR A. Seam carving for content-aware image resizing[C]//Proceedings of the ACM SIGGRAPH 2007. New York: ACM, 2007: 609-617. [3] NOH H, HAN B, NOH H, et al. Seam carving with forward gradient difference maps[C]//Proceedings of the 20th ACM International Conference on Multimedia. New York: ACM, 2012: 709-712. [4] AGHCHEHKOHAL M G, KUMARA W G C W. Improved seam carving using meta-heuristics algorithms combination[C]//Proceedings of the 2015 Signal Processing and Intelligent Systems Conference. Piscataway: IEEE, 2015: 43-47. [5] PENG Y F, LIU X X, WANG G, et al. Irregular shape image retargeting based on seam carving[C]//Proceedings of the 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information. Piscataway: IEEE, 2023: 1845-1848. [6] YAN B, LI K, YANG X C, et al. Seam searching-based pixel fusion for image re-targeting[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 15-23. [7] 郭迎春, 梁云鹤, 于明, 等. 基于图像分块和优化累积能量图的线裁剪算法[J]. 电子与信息学报, 2018, 40(2): 331-337. GUO Y C, LIANG Y H, YU M, et al. An improved seam carving algorithm based on image blocking and optimized cumulative energy map[J]. Journal of Electronics & Information Technology, 2018, 40(2): 331-337. [8] HEO Y, KOH Y J, KIM C S. Context-aware seam restoration for image extension[C]//Proceedings of the 2023 IEEE International Conference on Visual Communications and Image Processing. Piscataway: IEEE, 2023: 1-5. [9] NISHIYAMA M, OKABE T, SATO Y, et al. Sensation-based photo cropping[C]//Proceedings of the 17th ACM International Conference on Multimedia. New York: ACM, 2009: 669-672. [10] PRITCH Y, KAV-VENAKI E, PELEG S. Shift-map image editing[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 151-158. [11] SHI M L, YANG L, PENG G Q, et al. A content-aware image resizing method with prominent object size adjusted[C]//Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 2010: 175-176. [12] ZHANG L X, SONG H Z, OU Z M, et al. Image retargeting with multifocus fisheye transformation[J]. The Visual Computer, 2013, 29(5): 407-420. [13] REN T W, LIU Y, WU G S. Image retargeting based on global energy optimization[C]//Proceedings of the 2009 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2009: 406-409. [14] WANG Y S, TAI C L, SORKINE O, et al. Optimized scale-and-stretch for image resizing[J]. ACM Transactions on Graphics, 2008, 27(5): 118. [15] JIN Y, LIU L G, WU Q B. Nonhomogeneous scaling optimization for realtime image resizing[J]. The Visual Computer, 2010, 26(6): 769-778. [16] GUO Y W, LIU F, SHI J, et al. Image retargeting using mesh parametrization[J]. IEEE Transactions on Multimedia, 2009, 11(5): 856-867. [17] TAN W M, YAN B, LI K, et al. Image retargeting for preserving robust local feature: application to mobile visual search[J]. IEEE Transactions on Multimedia, 2016, 18(1): 128-137. [18] KIM Y, EUN H, JUNG C, et al. A quad edge-based grid encoding model for content-aware image retargeting[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(12): 3202-3215. [19] 陈美颖, 毕秀丽, 刘波. 基于网格与超像素的图像重定向方法[J]. 计算机科学, 2023, 50(S2): 306-313. CHEN M Y, BI X L, LIU B. Image retargeting method based on grids and superpixels[J]. Computer Science, 2023, 50(S2): 306-313. [20] RUBINSTEIN M, GUTIERREZ D, SORKINE O, et al. A comparative study of image retargeting[J]. ACM Transactions on Graphics, 2010, 29(6): 160. [21] WU L F, YAN C C, JIAN M, et al. A fast hybrid retargeting scheme with seam context and content aware strip partition[J]. Neurocomputing, 2018, 286: 198-213. [22] WANG J Q, QU Z, CHEN Y Y, et al. Adaptive content condensation based on grid optimization for thumbnail image generation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(11): 2079-2092. [23] ZHOU B, WANG X Y, CAO S X, et al. Optimal bi-directional seam carving for compressibility-aware image retargeting[J]. Journal of Visual Communication and Image Representation, 2016, 41: 21-30. [24] SHAFIEYAN F, KARIMI N, MIRMAHBOUB B, et al. Image seam carving using depth assisted saliency map[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 1155-1159. [25] TANG Z H, YAO J M, ZHANG Q, et al. Multi-operator image retargeting with visual quality preservation of salient regions[J]. Multimedia Systems, 2023, 29(2): 811-829. [26] 彭晏飞, 王静, 刘晓轩, 等. 结合主成分分析和图像分块的重定向研究[J]. 液晶与显示, 2024, 39(2): 157-167. PENG Y F, WANG J, LIU X X, et al. Retargeting method based on principal component analysis and image blocking[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(2): 157-167. [27] TAN W M, YAN B, LIN C M, et al. Cycle-IR: deep cyclic image retargeting[J]. IEEE Transactions on Multimedia, 2020, 22(7): 1730-1743. [28] CHO D, PARK J, OH T H, et al. Weakly- and self-supervised learning for content-aware deep image retargeting[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4568-4577. [29] LIN J X, ZHOU T K, CHEN Z B. DeepIR: a deep semantics driven framework for image retargeting[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo Workshops. Piscataway: IEEE, 2019: 54-59. [30] DANON D, ARAR M, COHEN-OR D, et al. Image resizing by reconstruction from deep features[J]. Computational Visual Media, 2021, 7(4): 453-466. [31] WANG R, HUANG N S, TANG F, et al. Language-driven diversified image retargeting[C]//Proceedings of the SIGGRAPH Asia 2022 Posters. New York: ACM, 2022: 1-2. [32] NADERI M R, GIVKASHI M H, KARIMI N, et al. OAIR: object-aware image retargeting using PSO and aesthetic quality assessment[EB/OL]. [2024-03-15]. https://arxiv.org/abs/2209.04804. [33] NADERI M R, GIVKASHI M H, KARIMI N, et al. Aesthetic-aware image retargeting based on foreground-background separation and PSO optimization[J]. Multimedia Tools and Applications, 2024, 83(12): 34867-34886. [34] GIVKASHI M, NADERI M, KARIMI N, et al. Supervised deep learning for content-aware image retargeting with Fourier convolutions[J]. Multimedia Tools and Applications, 2024, 83(36): 83611-83627. [35] LIU C Y, NG M K. A one-step image retargeing algorithm based on conformal energy[EB/OL]. [2024-03-15]. https://arxiv.org/abs/2402.18074. [36] SHOCHER A, BAGON S, ISOLA P, et al. InGAN: capturing and retargeting the “DNA” of a natural image[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4491-4500. [37] MASTAN I D, RAMAN S. DCIL: deep contextual internal learning for image restoration and image retargeting[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2355-2364. [38] GRANOT N, FEINSTEIN B, SHOCHER A, et al. Drop the GAN: in defense of patches nearest neighbors as single image generative models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13450-13459. [39] LIU S, WEI Z, SUN Y, et al. Composing semantic collage for image retargeting[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5032-5043. [40] AHMADI M, KARIMI N, SAMAVI S. Context-aware saliency detection for image retargeting using convolutional neural networks[J]. Multimedia Tools and Applications, 2021, 80(8): 11917-11941. [41] GUO G J, WANG H Z, SHEN C H, et al. Automatic image cropping for visual aesthetic enhancement using deep neural networks and cascaded regression[J]. IEEE Transactions on Multimedia, 2018, 20(8): 2073-2085. [42] YAN B, NIU X J, BARE B, et al. Semantic segmentation guided pixel fusion for image retargeting[J]. IEEE Transactions on Multimedia, 2019, 22(3): 676-687. [43] TANG F, DONG W M, MENG Y P, et al. Image retargetability[J]. IEEE Transactions on Multimedia, 2019, 22(3): 641-654. [44] VALDEZ-BALDERAS D, MURAVEYNYK O, SMITH T. Fast hybrid image retargeting[C]//Proceedings of the 2021 IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 1849-1853. [45] GUO Y C, ZHANG M, HAO X K, et al. IRNet-RS: image retargeting network via relative saliency[J]. Neural Computing and Applications, 2024, 36(8): 4133-4149. [46] WANG Z P, ZHANG W, ZHOU H T. Perception-guided multi-channel visual feature fusion for image retargeting[J]. Signal Processing: Image Communication, 2019, 79: 63-70. [47] ZHOU Y Z, ZHANG L M, ZHANG C, et al. Perceptually aware image retargeting for mobile devices[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2301-2313. [48] 鄢杰斌, 方玉明, 刘学林. 图像质量评价研究综述: 从失真的角度[J]. 中国图象图形学报, 2022, 27(5): 1430-1466. YAN J B, FANG Y M, LIU X L. The review of distortion-related image quality assessment[J]. Journal of Image and Graphics, 2022, 27(5): 1430-1466. [49] 陈慧, 李朝锋. 深度卷积神经网络的立体彩色图像质量评价[J]. 计算机科学与探索, 2018, 12(8): 1315-1322. CHEN H, LI C F. Stereoscopic color image quality assessment via deep convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(8): 1315-1322. [50] 曹玉东, 刘海燕, 贾旭, 等. 基于深度学习的图像质量评价方法综述[J]. 计算机工程与应用, 2021, 57(23): 27-36. CAO Y D, LIU H Y, JIA X, et al. Overview of image quality assessment method based on deep learning[J]. Computer Engineering and Applications, 2021, 57(23): 27-36. [51] HSU C C, LIN C W, FANG Y M, et al. Objective quality assessment for image retargeting based on perceptual geometric distortion and information loss[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3): 377-389. [52] LIN J X, ZHU L L, CHEN Z B, et al. Objective quality assessment for image retargeting based on hybrid distortion pooled model[C]//Proceedings of the 2015 7th International Workshop on Quality of Multimedia Experience. Piscataway: IEEE, 2015: 1-6. [53] JIANG Q P, SHAO F, LIN W S, et al. Learning sparse representation for objective image retargeting quality assessment[J]. IEEE Transactions on Cybernetics, 2018, 48(4): 1276-1289. [54] KARIMI M, SAMAVI S, KARIMI N, et al. Quality assessment of retargeted images by salient region deformity analysis[J]. Journal of Visual Communication and Image Representation, 2017, 43: 108-118. [55] KARIMI M, SAMAVI S, KARIMI N, et al. Pyramidal modeling of geometric distortions for retargeted image quality evaluation[J]. Multimedia Tools and Applications, 2018, 77(11): 13799-13820. [56] ZHANG Y B, LIN W S, LI Q H, et al. Multiple-level feature-based measure for retargeted image quality[J]. IEEE Transactions on Image Processing, 2018, 27(1): 451-463. [57] ABSETAN A, FATHI A. Integration of deep learned and handcrafted features for image retargeting quality assessment[J]. Cybernetics and Systems, 2023, 54(5): 673-696. [58] LI L D, LI Y X, WU J J, et al. Quality evaluation for image retargeting with instance semantics[J]. IEEE Transactions on Multimedia, 2020, 23: 2757-2769. [59] FANG Y M, ZENG K, WANG Z, et al. Objective quality assessment for image retargeting based on structural similarity[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4(1): 95-105. [60] ZHANG T T, YU M, GUO Y C, et al. Content-aware retargeted image quality assessment[J]. Information, 2019, 10(3): 111. [61] ZHOU B, LIU Z A, JI J Y, et al. Objective quality assessment of retargeted images based on RBF neural network with structural distortion and content change[J]. Multimedia Tools and Applications, 2023, 82(5): 7463-7477. [62] PENG Z Y, JIANG Q P, SHAO F, et al. LGGD: image retargeting quality assessment by measuring local and global geometric distortions[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3422-3437. [63] WEI L S, ZHAO L, PENG J. Reduced reference quality assessment for image retargeting by earth movers distance[J]. Applied Sciences, 2021, 11(20): 9776. [64] JIANG B, YANG J C, MENG Q G, et al. A deep evaluator for image retargeting quality by geometrical and contextual interaction[J]. IEEE Transactions on Cybernetics, 2018, 50(1): 87-99. [65] TSAO C, SU P C. Quality assessment of image retargeting based on importance of objects[C]//Proceedings of the 2023 International Conference on Consumer Electronics. Piscataway: IEEE, 2023: 779-780. [66] 陈楠, 蔡柏亲, 杨恭宁, 等. 考虑结构一致性和内容完整性的重定向图像质量评价[J]. 福州大学学报(自然科学版), 2023, 51(4): 517-524. CHEN N, CAI B Q, YANG G N, et al. Image retargeting quality assessment using content integrity and structural consistency[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(4): 517-524. [67] WU J N, XIE R, SONG L, et al. Deep feature guided image retargeting[C]//Proceedings of the 2019 IEEE Conference on Visual Communications and Image Processing. Piscataway: IEEE, 2019: 1-4. [68] TANG Z H, YAO J M. Image retargeting quality assessment based on saliency-driven classification[J]. Journal of Signal Processing: Image Communication, 2022, 105: 116688. [69] LIANG Y, LIU Y J, GUTIERREZ D. Objective quality prediction of image retargeting algorithms[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(2): 1099-1110. [70] YAN B, BARE B, LI K, et al. Learning quality assessment of retargeted images[J]. Signal Processing: Image Communication, 2017, 56: 12-19. [71] LIU Y J, HAN Y H, YE Z P, et al. Ranking-preserving cross-source learning for image retargeting quality assessment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1798-1805. [72] NIU Y Z, ZHANG S, WU Z S, et al. Image retargeting quality assessment based on registration confidence measure and noticeability-based pooling[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(3): 972-985. [73] RUBINSTEIN M, SHAMIR A, AVIDAN S. Multi-operator media retargeting[J]. ACM Transactions on Graphics, 2009, 28(3): 1-11. [74] MA L, LIN W S, DENG C W, et al. Image retargeting quality assessment: a study of subjective scores and objective metrics[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(6): 626-639. [75] 桑庆兵, 程大宇. 稀疏表示的无参考图像质量评价方法[J]. 计算机科学与探索, 2017, 11(1): 144-154. SANG Q B, CHENG D Y. Blind image quality assessment via sparse representation[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(1): 144-154. [76] 方玉明, 眭相杰, 鄢杰斌, 等. 无参考图像质量评价研究进展[J]. 中国图象图形学报, 2021, 26(2): 265-286. FANG Y M, SUI X J, YAN J B, et al. Progress in no-reference image quality assessment[J]. Journal of Image and Graphics, 2021, 26(2): 265-286. [77] 艾达, 白岩松, 于可欣, 等. 全景图像质量评价方法最新进展[J]. 计算机工程与应用, 2022, 58(24): 1-11. AI D, BAI Y S, YU K X, et al. Recent advances on panoramic image quality assessment methods[J]. Computer Engineering and Applications, 2022, 58(24): 1-11. |
[1] | MENG Xiangfu, SHI Guangqi, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Deep Learning Based Trajectory Similarity Measurement Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 623-644. |
[2] | MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581. |
[3] | LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao. Overview of Applications and Research Directions of Deep Learning Methods for Wind Power Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 602-622. |
[4] | CHEN Chong, ZHU Xiaoyu, WANG Fang, XU Yaqian, ZHANG Wei. Comprehensive Review of Physics-Guided Deep Learning: Advancements, Challenges, and Perspectives [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 277-294. |
[5] | CHENG Jialin, YUAN Deyu, SUN Zeyu, CHEN Ziyan. Cross-Network User Identity Linkage Method with Deep Learning Based on SDNE Embedding Representation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 417-428. |
[6] | WANG Yongwei, WEI Dejian, CAO Hui, JIANG Liang. Review of Deep Learning Applications in Heart Failure Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 65-78. |
[7] | GUO Jialin, ZHI Min, YIN Yanjun, GE Xiangwei. Review of Research on CNN and Visual Transformer Hybrid Models in Image Processing [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 30-44. |
[8] | YANG Chen, XU Hao, ZHU Jiawei, WU Qin, CHAI Zhilei. LightGCNet: Deep Gamut Compression Algorithm Based on Lightweight Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 196-210. |
[9] | YANG Meijun, YAO Ruoxia, XIE Juanying. CARFB: Plug-and-Play Object Detection Module [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 223-236. |
[10] | MENG Xiangfu, SHI Haoyuan. Survey of Transformer-Based Model for Time Series Forecasting [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 45-64. |
[11] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[12] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[13] | LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292. |
[14] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[15] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/