Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (1): 223-236.DOI: 10.3778/j.issn.1673-9418.2401082
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
YANG Meijun, YAO Ruoxia, XIE Juanying
Online:
2025-01-01
Published:
2024-12-31
杨梅君,姚若侠,谢娟英
YANG Meijun, YAO Ruoxia, XIE Juanying. CARFB: Plug-and-Play Object Detection Module[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 223-236.
杨梅君, 姚若侠, 谢娟英. CARFB:即插即用的目标检测模块[J]. 计算机科学与探索, 2025, 19(1): 223-236.
[1] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. [2] 谢娟英, 刘然. 基于深度学习的目标检测算法研究进展[J]. 陕西师范大学学报(自然科学版), 2019, 47(5): 1-9. XIE J Y, LIU R. The study progress of object detection algorithms based on deep learning[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2019, 47(5): 1-9. [3] 谢娟英, 鲁银圆, 孔维轩, 等. 基于改进RetinaNet的自然环境中蝴蝶种类识别[J]. 计算机研究与发展, 2021, 58(8): 1686-1704. XIE J Y, LU Y Y, KONG W X, et al. Butterfly species identi-fication from natural environment based on improved RetinaNet[J]. Journal of Computer Research and Development, 2021, 58(8): 1686-1704. [4] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [5] DAI J, HE K, SUN J. Instance-aware semantic segmentation via multi-task network cascades[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3150-3158. [6] HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 297-312. [7] KARPATHY A, LI F F. Deep visual-semantic alignments for generating image descriptions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 664-676. [8] WU Q, SHEN C, WANG P, et al. Image captioning and visual question answering based on attributes and external knowledge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1367-1381. [9] KANG K, LI H, YAN J, et al. T-CNN: tubelets with convolutional neural networks for object detection from videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2896-2907. [10] ZOU Z, CHEN K, SHI Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276. [11] XIE J, KONG W, LU Y, et al. KSRFB-net: detecting and identifying butterflies in ecological images based on human visual mechanism[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(10): 3143-3158. [12] DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6568-6577. [13] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. [14] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. [15] DUAN K, XIE L, QI H, et al. Corner proposal network for anchor-free, two-stage object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 399-416. [16] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. [17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. [18] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. [20] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. [21] ZAND M, ETEMAD A, GREENSPAN M. ObjectBox: from centers to boxes for anchor-free object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2022: 390-406. [22] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [23] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. [24] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [25] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [26] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. [27] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [28] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. [29] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[EB/OL]. [2023-12-20]. https://arxiv.org/abs/1605.06409. [30] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [31] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038. [32] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [33] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. [34] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. [35] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. [36] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-12-22]. https://arxiv.org/abs/1804. 02767. [37] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-12-22]. https://arxiv.org/abs/2004.10934. [38] LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 404-419. [39] ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4203-4212. [40] ZHAO Q, SHENG T, WANG Y, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 9259-9266. [41] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. [42] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-12-21]. https://arxiv.org/abs /2107.08430. [43] CHEN Q, WANG Y, YANG T, et al. You only look one-level feature[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043. [44] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. [45] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. [46] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. [2023-12-21]. https://arxiv. org/abs/2305.09972. [47] BENJUMEA A, TEETI I, CUZZOLIN F, et al. YOLO-Z: improving small object detection in YOLOv5 for autonomous vehicles[EB/OL]. [2023-12-21]. https://arxiv.org/abs /2112.11798. [48] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [49] ZHOU X, WANG D, KRäHENBüHL P. Objects as Points[EB/OL]. [2023-12-22]. https://arxiv.org/abs /1904.07850. |
[1] | HE Wenhao, GE Haibo. Camouflage Target Detection Method with Mutual Compensation of Local-Global Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 454-464. |
[2] | CHENG Jialin, YUAN Deyu, SUN Zeyu, CHEN Ziyan. Cross-Network User Identity Linkage Method with Deep Learning Based on SDNE Embedding Representation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 417-428. |
[3] | MA Qian, DONG Wu, ZENG Qingtao, ZHANG Yan, LU Likun, ZHOU Ziyi. Review of Retargeting Methods and Assessment of Retargeted Image Objective Quality [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 316-333. |
[4] | ZHU Yumin, SUN Guangling, MIAO Fei. Pedestrian Detection in Fisheye Images Based on Improved YOLOv8 Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 443-453. |
[5] | CHEN Chong, ZHU Xiaoyu, WANG Fang, XU Yaqian, ZHANG Wei. Comprehensive Review of Physics-Guided Deep Learning: Advancements, Challenges, and Perspectives [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 277-294. |
[6] | MENG Xiangfu, SHI Haoyuan. Survey of Transformer-Based Model for Time Series Forecasting [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 45-64. |
[7] | WANG Yongwei, WEI Dejian, CAO Hui, JIANG Liang. Review of Deep Learning Applications in Heart Failure Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 65-78. |
[8] | GUO Jialin, ZHI Min, YIN Yanjun, GE Xiangwei. Review of Research on CNN and Visual Transformer Hybrid Models in Image Processing [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 30-44. |
[9] | YANG Chen, XU Hao, ZHU Jiawei, WU Qin, CHAI Zhilei. LightGCNet: Deep Gamut Compression Algorithm Based on Lightweight Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 196-210. |
[10] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[11] | XU Yanwei, LI Jun, DONG Yuanfang, ZHANG Xiaoli. Survey of Development of YOLO Object Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238. |
[12] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[13] | WANG Bing, XU Pei, ZHANG Xingpeng. Research on Fourier Augmented Unbiased Cross-Domain Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2436-2448. |
[14] | LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292. |
[15] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/