Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (9): 2436-2448.DOI: 10.3778/j.issn.1673-9418.2308032
• Graphics·Image • Previous Articles Next Articles
WANG Bing, XU Pei, ZHANG Xingpeng
Online:
2024-09-01
Published:
2024-09-01
王兵,徐裴,张兴鹏
WANG Bing, XU Pei, ZHANG Xingpeng. Research on Fourier Augmented Unbiased Cross-Domain Object Detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2436-2448.
王兵, 徐裴, 张兴鹏. 傅里叶增强的无偏跨域目标检测研究[J]. 计算机科学与探索, 2024, 18(9): 2436-2448.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2308032
[1] CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3339-3348. [2] CHEN C, ZHENG Z, DING X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8866-8875. [3] ZHENG Y, HUANG D, LIU S, et al. Cross-domain object detection through coarse-to-fine feature adaptation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 13763-13772. [4] ZHAO L, WANG L. Task-specific inconsistency alignment for domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 14197-14206. [5] HOFFMAN J, TZENG E, PARK T, et al. CyCADA: cycle-consistent adversarial domain adaptation[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholm, Jul 10-15, 2018: 1994-2003. [6] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251. [7] 李岳楠, 徐浩宇, 董浩. 频域内面向目标检测的领域自适应[J]. 红外与激光工程, 2022, 51(7): 452-460. LI Y N, XU H Y, DONG H. Domain adaptation for object detection in the frequency domain[J]. Infrared and Laser Engineering, 2022, 51(7): 452-460. [8] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in Neural Infor-mation Processing Systems 30, Long Beach, Dec 4-9, 2017: 1195-1204. [9] DENG J, LI W, CHEN Y, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 4091-4101. [10] KURMI V K, SUBRAMANIAN V K, NAMBOODIRI V P. Domain impression: a source data free domain adaptation method[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2021. Piscataway: IEEE, 2021: 615-625. [11] HUANG J, GUAN D, XIAO A, et al. FSDR: frequency space domain randomization for domain generalization[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 6891-6902. [12] LI Y J, DAI X, MA C Y, et al. Cross-domain adaptive teacher for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 7571-7580. [13] CAO S, JOSHI D, GUI L Y, et al. Contrastive mean teacher for domain adaptive object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 17-24, 2023. Piscataway: IEEE, 2023: 23839-23848. [14] CHEN C, LI J, ZHOU H Y, et al. Relation matters: foreground-aware graph-based relational reasoning for domain adaptive object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3677-3694. [15] YANG Y, SOATTO S. FDA: Fourier domain adaptation for semantic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4085-4095. [16] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [17] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042. DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042. [18] 孙武, 邓赵红, 娄琼丹, 等. 基于模糊规则学习的无监督异构领域自适应[J]. 计算机科学与探索, 2022, 16(2): 403-412. SUN W, DENG Z H, LOU Q D, et al. Unsupervised heterogeneous domain adaptation with fuzzy rule learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 403-412. [19] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 1180-1189. [20] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2962-2971. [21] LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 1647-1657. [22] KIM T, JEONG M, KIM S, et al. Diversify and match: a domain adaptive representation learning paradigm for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 12456-12465. [23] OUYANG S, WANG X, LYU K, et al. Pseudo-label generation-evaluation framework for cross domain weakly supervised object detection[C]//Proceedings of the 2021 IEEE International Conference on Image Processing, Anchorage, Sep 19-22, 2021. Piscataway: IEEE, 2021: 724-728. [24] SHEN Z, MAHESHWARI H, YAO W, et al. SCL: towards accurate domain adaptive object detection via gradient detach based stacked complementary losses[EB/OL]. [2023-06-24]. https://arxiv.org/abs/1911.02559. [25] SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distri-bution alignment for adaptive object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6956-6965. [26] XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11721-11730. [27] 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116. LIN J W, WANG S T. Deep adversarial-reconstruction-classification networks for unsupervised domain adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. [28] CAI Q, PAN Y, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11457-11466. [29] ZHOU H, JIANG F, LU H. SSDA-YOLO: semi-supervised domain adaptive YOLO for cross-domain object detection[J]. Computer Vision and Image Understanding, 2023, 229: 103649. [30] WU J, CHEN J, HE M, et al. Target-relevant knowledge pre-servation for multi-source domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 5301-5310. [31] HE M, WANG Y, WU J, et al. Cross domain object detection by target-perceived dual branch distillation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 9570-9580. [32] CHEN M, CHEN W, YANG S, et al. Learning domain adaptive object detection with probabilistic teacher[C]//Proceedings of the 2022 International Conference on Machine Learning, Baltimore, Jul 17-23, 2022: 3040-3055. [33] ZHAO S, GONG M, LIU T, et al. Domain generalization via entropy regularization[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 16096-16107. [34] HINTON G E, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2023-06-24]. https://arxiv.org/abs/1503.02531. [35] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [36] INOUE N, FURUTA R, YAMASAKI T, et al. Cross-domain weakly-supervised object detection through progressive domain adaptation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5001-5009. [37] HE Z, ZHANG L. Domain adaptive object detection via asymmetric tri-way faster-RCNN[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 309-324. [38] ZHAO Z, GUO Y, SHEN H, et al. Adaptive object detection with dual multi-label prediction[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 54-69. [39] HOU L, ZHANG Y, FU K, et al. Informative and consistent correspondence mining for cross-domain weakly supervised object detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 9929-9938. [40] JIANG J, CHEN B, WANG J, et al. Decoupled adaptation for cross-domain object detection[C]//Proceedings of the 10th International Conference on Learning Representations, Apr 25-29, 2022. [41] LI S, YE M, ZHU X, et al. Source-free object detection by learning to overlook domain style[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8014-8023. |
[1] | JIANG Youpeng, HUA Yang, SONG Xiaoning. Domain Adaptation Algorithm for 3D Human Pose Estimation with Spatial Attention and Position Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2384-2394. |
[2] | LI Zhengwei, WANG Xili, AI Mei. Prototype-Combined Two-Stage Unsupervised Domain Adaptation Segmentation Model for Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2091-2108. |
[3] | DAN Yufang, TAO Jianwen. Possibilistic Distribution Distance Measure: Robust Domain Adaptation Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 674-692. |
[4] | QIAN Hanwei, SUN Weisong. Survey on Backdoor Attacks and Countermeasures in Deep Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1038-1048. |
[5] | SUN Jiaze+, TANG Yanmei, WANG Shuyan. Model Robustness Optimization Method Using GAN and Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1139-1146. |
[6] | MA Na, WEN Tingxin, JIA Xu. Multiple Adversarial Deep Domain Adaptation Model with Inter-class Difference Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1168-1179. |
[7] | LI Jie, QU Zhong. Survey of Application of Deep Learning in Finger Vein Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2557-2579. |
[8] | WANG Min, ZHAO Peng, GUO Xinping, MIN Fan. Fine-Grained Visual Categorization: Deep Pairwise Feature Comparison Interaction Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2663-2675. |
[9] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[10] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[11] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[12] | SUN Wu, DENG Zhaohong, LOU Qiongdan, GU Xin, WANG Shitong. Unsupervised Heterogeneous Domain Adaptation with Fuzzy Rule Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 403-412. |
[13] | SHI Yichen, FENG Jun, XIAO Lixuan, HE Jingjing, HU Jingjing. Out of Domain Face Anti-spoofing: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2471-2486. |
[14] | LIU Liping, QIAO Lele, JIANG Liucheng. Overview of Image Denoising Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1418-1431. |
[15] | WU Xiaodong, LIU Jinghao, JIN Jie, MAO Siping. DNN Intrusion Detection Model Based on DT and PCA [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1450-1458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/