Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (11): 2663-2675.DOI: 10.3778/j.issn.1673-9418.2207091
• Graphics·Image • Previous Articles Next Articles
WANG Min, ZHAO Peng, GUO Xinping, MIN Fan
Online:
2023-11-01
Published:
2023-11-01
汪敏,赵鹏,郭鑫平,闵帆
WANG Min, ZHAO Peng, GUO Xinping, MIN Fan. Fine-Grained Visual Categorization: Deep Pairwise Feature Comparison Interaction Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2663-2675.
汪敏, 赵鹏, 郭鑫平, 闵帆. 细粒度视觉分类:深度成对特征对比交互算法[J]. 计算机科学与探索, 2023, 17(11): 2663-2675.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2207091
[1] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 20-23, 2014. Piscataway: IEEE, 2014: 1725-1732. [2] HUANG G, LIU Z, VAN DER M L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, Jul 21-26, 2017. Piscataway: IEEE, 2017: 4700-4708. [3] HE J, CHEN J N, LIU S, et al. TransFG: a transformer archi-tecture for fine-grained recognition[J]. arXiv:2103.07976, 2021. [4] DU R Y, CHANG D L, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[C]//Proceedings of the 16th European Conference on Computer Vision,Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 153-168. [5] ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]//Pro-ceedings of the 34th AAAI Conference on Artificial Intelli-gence, the 32nd Innovative Applications of Artificial Intelli-gence Conference, the 10th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 13130-13137. [6] ZHANG H, XU T, ELHOSEINY M, et al. SPDA-CNN: unifying semantic part detection and abstraction for fine-grained recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 1143-1152. [7] KRAUSE J, JIN H L, YANG J C, et al. Fine-grained recog-nition without part annotations[C]//Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recogni-tion, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 5546-5555. [8] WANG Y M, CHOI J, MORARIU V, et al. Mining discri-minative triplets of patches for fine-grained classification[C]//Proceedings of the 2016 IEEE Conference on Com-puter Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 1163-1172. [9] LIN TY, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 13-16, 2015. Piscataway: IEEE, 2015: 1449-1457. [10] JI R Y, WEN L Y, ZHANG L B, et al. Attention convolu-tional binary neural tree for fine-grained visual categoriza-tion[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10468-10477. [11] ZHANG F, LIMEN G, ZHAI G S, et al. Multi-branch and multi-scale attention learning for fine-grained visual catego-rization[C]//LNCS 12572: Proceedings of the 27th Interna-tional Conference on Multimedia Modeling, Prague, Jun 22-24, 2021. Cham: Springer, 2021: 136-147. [12] CHEN Y, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 5157-5166. [13] YANG Z, LUO T G, WANG D, et al. Learning to navigate for fine-grained classification[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 438-454. [14] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 834-849. [15] LIU X, XIA T, WANG J, et al. Fully convolutional attention localization networks: efficient attention localization for fine-grained recognition[J]. arXiv:1603.06765, 2016. [16] BRANSON S, VAN H G, BELONGIE S, et al. Bird species categorization using pose normalized deep convolutional nets[J]. arXiv:1406.2952, 2014. [17] HUANG S L, XU Z, TAO D C, et al. Part-stacked CNN for fine-grained visual categorization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 1173-1182. [18] GAO Y, HAN X T, WANG X, et al. Channel interaction networks for fine-grained image categorization[C]//Procee-dings of the 34th AAAI Conference on Artificial Intelli-gence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 10818-10825. [19] CHANG D L, DING Y F, XIE J Y, et al. The devil is in the channels: mutual-channel loss for fine-grained image classi-fication[J]. IEEE Transactions on Image Processing, 2020, 29: 4683-4695. [20] ZHANG L B, HUANG S L, LIU W, et al. Learning a mixture of granularity-specific experts for fine-grained cate-gorization[C]//Proceedings of the 26th IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019. Piscataway: IEEE, 2019: 8330-8339. [21] XU S, CHANG D L, XIE J Y, et al. Grad-CAM: guided channel-spatial attention module for fine-grained visual cla-ssification[C]//Proceedings of the 2021 IEEE 31st Interna-tional Workshop on Machine Learning for Signal Processing, Gold Coast, Oct 25-28, 2021. Piscataway: IEEE, 2021: 1-6. [22] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduc-tion by learning an invariant mapping[C]//Proceedings of the 19th IEEE Conference on Computer Vision and Pattern Recognition, New York, Jun 17-22, 2006. Piscataway: IEEE, 2006: 1735-1742. [23] GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap your own latent—a new approach to self-supervised learning[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 21271-21284. [24] SHARMA V, TAPASWI M, SARFRAZ M S, et al. Cluster-ing based contrastive learning for improving face represen-tations[C]//Proceedings of the 2020 IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires, Nov 16-20, 2020. Piscataway: IEEE, 2020: 109-116. [25] DOSOVITSKIY A, SPRINGENBERG J T, RIEDMILLER M, et al. Discriminative unsupervised feature learning with convolutional neural networks[C]//Advances in Neural Infor-mation Processing Systems 27, Montreal, Dec 8-13, 2014: 766-774. [26] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Pis-cataway: IEEE, 2015: 815-823. [27] LI Y F, HU P, LIU Z T, et al. Contrastive clustering[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 32nd Conference on Innovative Applica-tions of Artificial Intelligence, the 11th Symposium on Edu-cational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 8547-8555. [28] DANG Z Y, DENG C, YANG X, et al. Doubly contrastive deep clustering[J]. arXiv:2103.05484, 2021. [29] WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[R]. Pasadena: California Institute of Technology, 2011. [30] MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[J]. arXiv:1306.5151, 2013. [31] KRAUSE J, STARK M, DENG J, et al. 3D object represen-tations for fine-grained categorization[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, Portland, Jun 23-24, 2013. Piscataway: IEEE, 2013: 554-561. [32] KHOSLA A, JAYADEVAPRAKASH N, YAOB P, et al. Novel dataset for fine-grained image categorization: Stanford dogs[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Piscataway: IEEE, 2011. [33] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25,Lake Tahoe, Dec 3-6, 2012: 1106-1114. [34] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778. [35] RAO Y M, CHEN G Y, LU J W, et al. Counterfactual atten-tion learning for fine-grained visual categorization and re-identification[C]//Proceedings of the 28th IEEE Interna-tional Conference on Computer Vision, Oct 10-17, 2021. Piscataway: IEEE, 2021: 1025-1034. [36] WANG D Q, SHEN Z Q, SHAO J, et al. Multiple granularity descriptors for fine-grained categorization[C]//Proceedings of the 22nd IEEE International Conference on Computer Vision, Santiago, Dec 13-16, 2015. Piscataway: IEEE, 2015: 2399-2406. [37] WANG Y M, MORARIU V I, DAVIS L S. Learning a discriminative filter bank within a CNN for fine-grained recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 4148-4157. [38] FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4438-4446. [39] LUO W, YANG X T, MO X J, et al. Cross-x learning for fine-grained visual categorization[C]//Proceedings of the 26th IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8241-8250. [40] ZHANG T, CHANG D L, MAZ Y, et al. Progressive co-attention network for fine-grained visual classification[C]//Proceedings of the 2021 International Conference on Visual Communications and Image Processing, Munich, Dec 5-8,2021. Piscataway: IEEE, 2021: 1-5. [41] DUBEY A, GUPTA O, GUO P, et al. Pairwise confusion for fine-grained visual classification[C]//LNCS 11216: Procee-dings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 71-88. [42] DUBEY A, GUPTA O, RASKAR R, et al. Maximum-entropy fine grained classification[C]//Advances in Neural Informa-tion Processing Systems 31, Montréal, Dec 3-8, 2018: 635-645. [43] SUN M, YUAN Y C, ZHOU F, et al. Multi-attention multi-class constraint for fine-grained image recognition[C]//LNCS 11220: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 834-850. [44] LUO W, ZHANG H M, LI J, et al. Learning semantically enhanced feature for fine-grained image classification[J]. IEEE Signal Processing Letters, 2020, 27: 1545-1549. [45] SELVARAJU R R, COGSWELL M, DAS A, et al. GRAD-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 24th IEEE Inter-national Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 618-626. |
[1] | ZHAO Xiaoyan, SONG Wei. Attention Learning Particle Swarm Optimization Algorithm Guided by Aggrega-tion Indicator [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866. |
[2] | HAN Xu, WU Feng. Offline Meta-Reinforcement Learning with Contrastive Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1917-1927. |
[3] | WANG Haiyong, PAN Haitao, LIU Guinan. Face Recognition Method Based on Attention Mechanism and Curriculum Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903. |
[4] | LI Zhijie, HAN Ruirui, LI Changhua, ZHANG Jie, SHI Haoqi. Entity Relation Extraction Method Integrating Pre-trained Model and Attention [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1453-1462. |
[5] | XUE Yanming, LI Guanghui, QI Tao. Traffic Prediction Method Integrating Graph Wavelet and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1405-1416. |
[6] | JIA Tianhao, PENG Li, DAI Feifei. Object Detector with Residual Learning and Multi-scale Feature Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111. |
[7] | ZHAO Shan, ZHENG Ailing, LIU Zilu, GAO Yu. Object Detection Algorithm Based on Channel Separation Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125. |
[8] | SUN Jiaze+, TANG Yanmei, WANG Shuyan. Model Robustness Optimization Method Using GAN and Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1139-1146. |
[9] | QIAN Hanwei, SUN Weisong. Survey on Backdoor Attacks and Countermeasures in Deep Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1038-1048. |
[10] | SU Junkai, DUAN Xianhua, YE Zhaobing. Research on Corn Disease Detection Based on Improved YOLOv5 Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941. |
[11] | CHEN Xiaolei, LU Yubing, CAO Baoning, LIN Dongmei. Lightweight and High-Precision Dual-Channel Attention Mechanism Module [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 857-867. |
[12] | QI Xin, YUAN Feiniu, SHI Jinting, WANG Guiqian. Semantic Segmentation Algorithm of Multi-level Feature Fusion Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 922-932. |
[13] | XIA Hongbin, LI Qiang, LIU Yuan. Local and Global Feature Fusion Network Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 902-911. |
[14] | HU Shuo, YAO Meiyu, SUN Linna, WANG Jie, ZHOU Si'en. Accurate Visual Tracking with Attention Feature [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 868-878. |
[15] | SHEN Huaiyan, WU Yun. Liver CT Image Segmentation Method Based on MSFA-Net [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/