[1] MOROVIC J. Color gamut mapping[M]. Chichester: John Wiley & Sons, 2008.
[2] LE H M, JEONG T, ABDELHAMED A, et al. GamutNet: restoring wide-gamut colors for camera-captured images[C]//Proceedings of the 29th Color and Imaging Conference, Nov 1-4, 2021: 7-12.
[3] LE H M, PRICE B, COHEN S, et al. GamutMLP: a lightweight MLP for color loss recovery[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18268-18277.
[4] CHOI B, ALLEBACH J P. Mimicking DBS halftoning via a deep learning approach[J]. Electronic Imaging, 2022, 34(15).
[5] XIA M, HU W, LIU X, et al. Deep halftoning with reversible binary pattern[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14000-14009.
[6] KASSON J M. Color image gamut-mapping system with chroma enhancement at human-insensitive spatial frequencies: U.S. Patent 5450216[P]. 1995-09-12.
[7] FARUP I, HARDEBERG J Y, AMSRUD M. Enhancing the SGCK colour gamut mapping algorithm[C]//Proceedings of the 2nd European Conference on Colour in Graphics, Imaging, and Vision, Aachen, Apr 5-8, 2004: 520-524.
[8] XU L, ZHAO B, LUO M R. Colour gamut mapping between small and large colour gamuts: part I. gamut compression[J]. Optics Express, 2018, 26(9): 11481-11495.
[9] HAN H, KWAK Y. How Koreans understand colorfulness, chroma, vividness, and depth[C]//Proceedings of the 30th Color and Imaging Conference, Scottsdale, Nov 13-17, 2022: 246-249.
[10] LI H, ZHAO H, LIU M, et al. Research on spatial gamut mapping from source device to destination device[C]//Proceedings of the 2023 IEEE 18th Conference on Industrial Electronics and Applications. Piscataway: IEEE, 2023: 1909-1914.
[11] 刘菊华. 彩色打印机色彩特性化关键技术研究[D]. 武汉: 武汉大学, 2014.
LIU J H. Research on key technologies for color printer characterization[D]. Wuhan: Wuhan University, 2014.
[12] CHOI B, HU S, GUO R, et al. Developing a gamut mapping method for a novel inkjet printer[J]. Electronic Imaging, 2022, 34: 1-6.
[13] BALA R, DEQUEIROZ R, ESCHBACH R, et al. Gamut mapping to preserve spatial luminance variations[J]. Journal of Imaging Science and Technology, 2001, 45(5): 436-443.
[14] ZOLLIKER P, SIMON K. Adding local contrast to global gamut mapping algorithms[C]//Proceedings of the 3rd European Conference on Colour in Graphics, Imaging, and Vision, Leeds, Jun 19-22, 2006: 257-261.
[15] ZHU M, HARDEBERG J Y, WANG N, et al. Spatial gamut mapping based on guided filter[J]. Electronic Imaging, 2016(20): 1-4.
[16] ZHU M, ZHUN T. A spatial gamut mapping algorithm based on adaptive detail preservation[J]. Journal of Imaging Science and Technology, 2018, 62(1).
[17] 朱明, 焦会敏, 赵兴运, 等. 一种基于图像细节保持的空间色域映射算法框架[J]. 北京理工大学学报, 2020, 40(3): 290-297.
ZHU M, JIAO H M, ZHAO X Y, et al. A spatial gamut mapping framework based on detail-preservation[J]. Transactions of Beijing lnstitute of Technology, 2020, 40(3): 290-297.
[18] NAKAUCHI S, HATANAKA S, USUI S. Color gamut mapping based on a perceptual image difference measure[J]. Color Research & Application, 1999, 24(4): 280-291.
[19] KIMMEL R, SHAKED D, ELAD M, et al. Space-dependent color gamut mapping: a variational approach[J]. IEEE Transactions on Image Processing, 2005, 14(6): 796-803.
[20] BONNIER N, SCHMITT F, BRETTEL H, et al. Evaluation of spatial gamut mapping algorithms[C]//Proceedings of the 14th Color and Imaging Conference, Scottsdale, Nov 6-10, 2006: 56-61.
[21] ALSAM A, FARUP I. Spatial colour gamut mapping by orthogonal projection of gradients onto constant hue lines[C]//Proceedings of the 2012 International Symposium on Visual Computing. Berlin, Heidelberg: Springer, 2012: 556-565.
[22] WANG Y, ZENG P, LUO X. Color gamut mapping based on image fusion[C]//Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Piscataway: IEEE, 2008: 801-805.
[23] PREISS J, FERNANDES F, URBAN P. Color-image quality assessment: from prediction to optimization[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1366-1378.
[24] LISSNER I, URBAN P. Toward a unified color space for perception-based image processing[J]. IEEE Transactions on Image Processing, 2011, 21(3): 1153-1168.
[25] LIU S, LI S. Gamut mapping optimization algorithm based on gamut-mapped image measure (GMIM)[J]. Signal, Image and Video Processing, 2018, 12: 67-74.
[26] TAKEUCHI M, SAKAMOTO Y, YOKOYAMA R, et al. A gamut-extension method considering color information restoration using convolutional neural networks[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 774-778.
[27] LI H, LIU Q, SUN B, et al. A novel gamut expansion method based on combined global-local mapping for sRGB-to-ProPhoto conversion[J]. IET Image Processing, 2023, 17(11): 3165-3176.
[28] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1251-1258.
[29] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-12-24]. https://arxiv.org/abs/1704. 04861.
[30] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[31] CAI Z, DING X, SHEN Q, et al. RefConv: re-parameterized refocusing convolution for powerful ConvNets[EB/OL]. [2023-12-24]. https://arxiv.org/abs/2310.10563.
[32] ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 3(1): 47-57.
[33] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers. Piscataway: IEEE, 2003: 1398-1402.
[34] REINHARD J, URBAN P. Perceptually optimizing color look-up tables[J]. IEEE Transactions on Image Processing, 2022, 32: 403-414.
[35] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5728-5739.
[36] VALANARASU J M J, PATEL V M. UNeXt: MLP-based rapid medical image segmentation network[C]//Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 23-33.
[37] YIN Y, HAN Z, JIAN M, et al. AMSUnet: a neural network using atrous multi-scale convolution for medical image segmentation[J]. Computers in Biology and Medicine, 2023, 162: 107120.
[38] MAAZ M, SHAKER A, CHOLAKKAL H, et al. EdgeNeXt: efficiently amalgamated CNN-Transformer architecture for mobile vision applications[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 3-20.
[39] LI Y, YUAN G, WEN Y, et al. Efficientformer: vision transformers at mobilenet speed[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 12934-12949.
[40] LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 1833-1844. |