
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (5): 1157-1176.DOI: 10.3778/j.issn.1673-9418.2405012
• Frontiers·Surveys • Previous Articles Next Articles
LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo
Online:2025-05-01
Published:2025-04-28
李少波,王晓强,郭利彪,红英,王志国
LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo. Review of Deep Learning Applications in Unmanned Aerial Vehicle Remote Sensing Images of Grass Plants[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1157-1176.
李少波, 王晓强, 郭利彪, 红英, 王志国. 草类植物无人机遥感图像中深度学习应用综述[J]. 计算机科学与探索, 2025, 19(5): 1157-1176.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2405012
| [1] WU Z N, CHEN Y J, ZHAO B, et al. Review of weed detection methods based on computer vision[J]. Sensors, 2021, 21(11): 3647. [2] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. [3] MANORUTHRA S, KALAIVANI D V, JOSEPH D F, et al. Automated weed removal system using convolutional neural network[J]. International Journal of Scientific & Technology Research, 2020, 9: 1212-1214. [4] MACLAREN C, STORKEY J, MENEGAT A, et al. An ecological future for weed science to sustain crop production and the environment: a review[J]. Agronomy for Sustainable Development, 2020, 40(4): 24. [5] BASIRI A, MARIANI V, SILANO G, et al. A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture[J]. Journal of Navigation, 2022, 75(2): 364-383. [6] HOSSAIN S, LEE D J. Deep learning-based real-time multiple- object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices[J]. Sensors, 2019, 19(15): 3371. [7] RASMUSSEN J, AZIM S, NIELSEN J. Pre-harvest weed mapping of Cirsium arvense L. based on free satellite imagery - The importance of weed aggregation and image resolution[J]. European Journal of Agronomy, 2021, 130: 126373. [8] VASILEIOU M, KYRGIAKOS L S, KLEISIARI C, et al. Transforming weed management in sustainable agriculture with artificial intelligence: a systematic literature review towards weed identification and deep learning[J]. Crop Protection, 2024, 176: 106522. [9] ESPEJO-GARCIA B, MYLONAS N, ATHANASAKOS L, et al. Towards weeds identification assistance through transfer learning[J]. Computers and Electronics in Agriculture, 2020, 171: 105306. [10] GE H X, MA F, LI Z W, et al. Grain yield estimation in rice breeding using phenological data and vegetation indices derived from UAV images[J]. Agronomy, 2021, 11(12): 2439. [11] WALSH J, MAHONY N O, CAMPBELL S, et al. Deep learning vs. traditional computer vision[C]//Proceedings of the 2019 Computer Vision Conference. Cham: Springer, 2019: 128-144. [12] AHMAD A, SARASWAT D, AGGARWAL V, et al. Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems[J]. Computers and Electronics in Agriculture, 2021, 184: 106081. [13] FRACCARO P, BUTT J, EDWARDS B, et al. A deep learning application to map weed spatial extent from unmanned aerial vehicles imagery[J]. Remote Sensing, 2022, 14(17): 4197. [14] CHEW R, RINEER J, BEACH R, et al. Deep neural networks and transfer learning for food crop identification in UAV images[J]. Drones, 2020, 4(1): 7. [15] QIAO X, LI Y Z, SU G Y, et al. MmNet: identifying Mikania micrantha Kunth in the wild via a deep convolutional neural network[J]. Journal of Integrative Agriculture, 2020, 19(5): 1292-1300. [16] TEIMOURI N, DYRMANN M, NIELSEN P R, et al. Weed growth stage estimator using deep convolutional neural networks[J]. Sensors, 2018, 18(5): 1580. [17] ADHIKARI S P, YANG H, KIM H. Learning semantic graphics using convolutional encoder-decoder network for autonomous weeding in paddy[J]. Frontiers in Plant Science, 2019, 10: 1404. [18] GAO J F, FRENCH A P, POUND M P, et al. Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields[J]. Plant Methods, 2020, 16(1): 29. [19] HUSSAIN N, FAROOQUE A A, SCHUMANN A W, et al. Application of deep learning to detect Lamb’s quarters (Chenopodium album L.) in potato fields of Atlantic Canada[J]. Computers and Electronics in Agriculture, 2021, 182: 106040. [20] JUNIOR L C M, ULSON J A C. Real time weed detection using computer vision and deep learning[C]//Proceedings of the 2021 14th IEEE International Conference on Industry Applications. Piscataway: IEEE, 2021: 1131-1137. [21] PENG H X, LI Z H, ZHOU Z Y, et al. Weed detection in paddy field using an improved RetinaNet network[J]. Computers and Electronics in Agriculture, 2022, 199: 107179. [22] RAZFAR N, TRUE J, BASSIOUNY R, et al. Weed detection in soybean crops using custom lightweight deep learning models[J]. Journal of Agriculture and Food Research, 2022, 8: 100308. [23] BEEHARRY Y, BASSOO V. Performance of ANN and AlexNet for weed detection using UAV-based images[C]//Proceedings of the 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering. Piscataway: IEEE, 2020: 163-167. [24] SIVAKUMAR A N V, LI J, SCOTT S, et al. Comparison of object detection and patch-based classification deep learning models on mid- to late-season weed detection in UAV imagery[J]. Remote Sensing, 2020, 12: 2136. [25] WANG Q F, CHENG M, HUANG S, et al. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings[J]. Computers and Electronics in Agriculture, 2022, 199: 107194. [26] TORRES-SáNCHEZ J, MESAS-CARRASCOSA F J, JIMéNEZ-BRENES F M, et al. Early detection of broad-leaved and grass weeds in wide row crops using artificial neural networks and UAV imagery[J]. Agronomy, 2021, 11(4): 749. [27] HAQ S I U, TAHIR M N, LAN Y B. Weed detection in wheat crops using image analysis and artificial intelligence (AI)[J]. Applied Sciences, 2023, 13(15): 8840. [28] PUNITHAVATHI R, RANI A D C, SUGHASHINI K R, et al. Computer vision and deep learning-enabled weed detection model for precision agriculture[J]. Computer Systems Science and Engineering, 2023, 44(3): 2759-2774. [29] SUDARS K, JASKO J, NAMATEVS I, et al. Dataset of annotated food crops and weed images for robotic computer vision control[J]. Data in Brief, 2020, 31: 105833. [30] XU Y L, ZHAI Y T, ZHAO B, et al. Weed recognition for depthwise separable network based on transfer learning[J]. Intelligent Automation & Soft Computing, 2021, 27(3): 669-682. [31] JELíNEK Z, BALAZOVA K, STARY K, et al. Comparing RGB-based vegetation indices from UAV imageries to estimate hops canopy area[J]. Agronomy Research, 2020, 18(4): 2592-2601. [32] STEMPLIUK S, MENOTTI D. Agriculture multispectral UAV image registration using salient features and mutual information[C]//Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2020: 4108-4111. [33] 杨蜀秦, 宋志双, 尹瀚平, 等. 基于深度语义分割的无人机多光谱遥感作物分类方法[J]. 农业机械学报, 2021, 52(3): 185-192. YANG S Q, SONG Z S, YIN H P, et al. Crop classification method of UVA multispectral remote sensing based on deep semantic segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 185-192. [34] 张妮娜, 张珂, 李运平, 等. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用, 2023, 38(1): 163-172. ZHANG N N, ZHANG K, LI Y P, et al. Study on machine learning methods for vegetation classification in typical humid mountainous areas of South China based on the UAV multispectral remote sensing[J]. Remote Sensing Technology and Application, 2023, 38(1): 163-172. [35] 陈虹, 谢玲, 陈林琳. 基于低空无人机遥感的高粱生长状况监测[J]. 中国农机化学报, 2021, 42(4): 170-175. CHEN H, XIE L, CHEN L L. Monitoring of sorghum growth based on UAV remote sensing[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 170-175. [36] 陈建福, 赵亮, 岳云开, 等. 无人机多光谱遥感在作物生长监测中的应用研究进展[J]. 作物研究, 2022, 36(4): 391-395. CHEN J F, ZHAO L, YUE Y K, et al. Research progress of UAV multispectral remote sensing application in crop growth monitoring[J]. Crop Research, 2022, 36(4): 391-395. [37] 周宇飞, 王振师, 钟映霞, 等. 无人机多光谱遥感中植被指数与森林地表可燃物载量关系研究[J]. 林业与环境科学, 2022, 38(2): 134-140. ZHOU Y F, WANG Z S, ZHONG Y X, et al. Research on the relationship between vegetation index and forest surface fuel load in UAV multi-spectral remote sensing[J]. Forestry and Environmental Science, 2022, 38(2): 134-140. [38] 王帅, 郭治兴, 梁雪映, 等. 基于无人机多光谱遥感数据的烟草植被指数估产模型研究[J]. 山西农业科学, 2021, 49(2): 195-203. WANG S, GUO Z X, LIANG X Y, et al. Study on yield estimation model of tobacco vegetation index based on UAV multi-spectral remote sensing data[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(2): 195-203. [39] 地力夏提·依马木. 基于无人机多光谱遥感影像的棉花虫害监测研究[D]. 乌鲁木齐: 新疆大学, 2021. DILIXIATI YIMAMU. Research on cotton insect pest monitoring based on UAV[D]. Urumqi: Xinjiang University, 2021. [40] 贺园园. 基于无人机遥感的大面积农作物叶片病虫害识别研究[J]. 自动化与仪器仪表, 2023(1): 216-220. HE Y Y. Identification of crop leaf diseases and insect pests based on UAV remote sensing[J]. Automation & Instrumentation, 2023(1): 216-220. [41] 张智韬, 台翔, 杨宁, 等. 不同植被覆盖度下无人机多光谱遥感土壤含盐量反演[J]. 农业机械学报, 2022, 53(8): 220-230. ZHANG Z T, TAI X, YANG N, et al. UAV multispectral remote sensing soil salinity inversion based on different fractional vegetation coverages[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 220-230. [42] 李鑫星, 朱晨光, 傅泽田, 等. 基于无人机多光谱图像的土壤水分检测方法研究[J]. 光谱学与光谱分析, 2020, 40(4): 1238-1242. LI X X, ZHU C G, FU Z T, et al. Rapid detection of soil moisture content based on UAV multispectral image[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1238-1242. [43] 高鲁红. 基于无人机遥感影像的土壤重金属污染环境监测方法研究[J]. 环境科学与管理, 2023, 48(6): 138-142. GAO L H. Monitoring of heavy metal pollution in soil based on UAV remote sensing image[J]. Environmental Science and Management, 2023, 48(6): 138-142. [44] ASLAN M F, DURDU A, SABANCI K, et al. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses[J]. Applied Sciences, 2022, 12(3): 1047. [45] ZHANG J J, ZHOU Y X, SAAB R. Post-training quantization for neural networks with provable guarantees[J]. SIAM Journal on Mathematics of Data Science, 2023, 5(2): 373-399. [46] LIU Y, PU H B, SUN D W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices[J]. Trends in Food Science & Technology, 2021, 113: 193-204. [47] KAMILARIS A, PRENAFETA-BOLDú F X. A review of the use of convolutional neural networks in agriculture[J]. The Journal of Agricultural Science, 2018, 156(3): 312-322. [48] SUBEESH A, BHOLE S, SINGH K, et al. Deep convolutional neural network models for weed detection in polyhouse grown bell peppers[J]. Artificial Intelligence in Agriculture, 2022, 6: 47-54. [49] YAN X, DENG X W, JIN J. Classification of weed species in the paddy field with DCNN-learned features[C]//Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2020: 336-340. [50] JIN X J, BAGAVATHIANNAN M, MAITY A, et al. Deep learning for detecting herbicide weed control spectrum in turfgrass[J]. Plant Methods, 2022, 18(1): 94. [51] KULKARNI S, ANGADI S A. IoT based weed detection using image processing and CNN[J]. International Journal of Engineering Applied Sciences and Technology, 2019, 4(3): 606-609. [52] BOUGUETTAYA A, ZARZOUR H, KECHIDA A, et al. A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images[J]. Cluster Computing, 2023, 26(2): 1297-1317. [53] SOEB M J A, JUBAYER M F, TARIN T A, et al. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T) [J]. Scientific Reports, 2023, 13(1): 6078. [54] 张建华, 陈申宽, 张晓振, 等. 人工智能技术在植物叶片病虫害识别中的研究进展[J]. 种子科技, 2023, 41(16): 124-126. ZHANG J H, CHEN S K, ZHANG X Z, et al. Research progress of artificial intelligence technology in plant leaf diseases and insect pests identification[J]. Seed Science & Technology, 2023, 41(16): 124-126. [55] DEV K, ASHRAF Z, MUHURI P K, et al. Deep autoencoder based domain adaptation for transfer learning[J]. Multi-media Tools and Applications, 2022, 81(16): 22379-22405. [56] BOSILJ P, APTOULA E, DUCKETT T, et al. Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture[J]. Journal of Field Robotics, 2020, 37(1): 7-19. [57] FAROOQ A, JIA X P, HU J K, et al. Knowledge transfer via convolution neural networks for multi-resolution lawn weed classification[C]//Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019. [58] ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76. [59] CHEN D, LU Y Z, LI Z J, et al. Performance evaluation of deep transfer learning on multi-class identification of common weed species in cotton production systems[J]. Computers and Electronics in Agriculture, 2022, 198: 107091. [60] ESPEJO-GARCIA B, MYLONAS N, ATHANASAKOS L, et al. Combining generative adversarial networks and agricultural transfer learning for weeds identification[J]. Biosystems Engineering, 2021, 204: 79-89. [61] SHARMA P. Crops and weeds classification using convolutional neural networks via optimization of transfer learning parameters[J]. International Journal of Engineering and Advanced Technology, 2019, 8(5): 2284-2294. [62] AGGARWAL V, AHMAD A, ETIENNE A, et al. 4Weed dataset: annotated imagery weeds dataset[EB/OL]. [2024-04-08]. https://arxiv.org/abs/2204.00080. [63] SA I, POPOVI? M, KHANNA R, et al. WeedMap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming[J]. Remote Sensing, 2018, 10(9): 1423. [64] HAUG S, OSTERMANN J. A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks[C]//Proceedings of the 13th European Conference on Computer Vision Workshops. Cham: Springer, 2014: 105-116. [65] ILYAS T, ARSA D M S, AHMAD K, et al. CWD30: a comprehensive and holistic dataset for crop weed recognition in precision agriculture[EB/OL]. [2024-04-08]. https://arxiv.org/abs/2305.10084. [66] CHAMP J, MORA-FALLAS A, GO?AU H, et al. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots[J]. Applications in Plant Sciences, 2020, 8(7): e11373. [67] MOAZZAM S I, KHAN U S, QURESHI W S, et al. A patch-image based classification approach for detection of weeds in sugar beet crop[J]. IEEE Access, 2021, 9: 121698-121715. [68] WANG P, TANG Y, LUO F, et al. Weed25: a deep learning dataset for weed identification[J]. Frontiers in Plant Science, 2022, 13: 1053329. [69] OLSEN A, KONOVALOV D A, PHILIPPA B, et al. DeepWeeds: a multiclass weed species image dataset for deep learning[J]. Scientific Reports, 2019, 9(1): 2058. [70] KRESTENITIS M, RAPTIS E K, KAPOUTSIS A C, et al. CoFly-WeedDB: a UAV image dataset for weed detection and species identification[J]. Data in Brief, 2022, 45: 108575. [71] JIANG H H, ZHANG C Y, QIAO Y L, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming[J]. Computers and Electronics in Agriculture, 2020, 174: 105450. [72] HU K, WANG Z Y, COLEMAN G, et al. Deep learning techniques for in-crop weed recognition in large-scale grain production systems: a review[J]. Precision Agriculture, 2024, 25(1): 1-29. [73] RUIGROK T, VAN HENTEN E, BOOIJ J, et al. Application-specific evaluation of a weed-detection algorithm for plant-specific spraying[J]. Sensors, 2020, 20(24): 7262. [74] REEDHA R, DERICQUEBOURG E, CANALS R, et al. Vision transformers for weeds and crops classification of high resolution UAV images[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2109.02716. [75] GENZE N, AJEKWE R, GüRELI Z, et al. Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields[J]. Computers and Electronics in Agriculture, 2022, 202: 107388. [76] LI J Y, ZHANG W, ZHOU H, et al. Weed detection in soybean fields using improved YOLOv7 and evaluating herbicide reduction efficacy[J]. Frontiers in Plant Science, 2024, 14: 1284338. [77] XU B B, FAN J H, CHAO J, et al. Instance segmentation method for weed detection using UAV imagery in soybean fields[J]. Computers and Electronics in Agriculture, 2023, 211: 107994. [78] ZHAO J Q, YAN J W, XUE T J, et al. A deep learning method for oriented and small wheat spike detection (OSWSDet) in UAV images[J]. Computers and Electronics in Agriculture, 2022, 198: 107087. [79] SAPKOTA B B, POPESCU S, RAJAN N, et al. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton[J]. Scientific Reports, 2022, 12(1): 19580. [80] CAI Y L, ZENG F G, XIAO J Y, et al. Attention-aided semantic segmentation network for weed identification in pineapple field[J]. Computers and Electronics in Agriculture, 2023, 210: 107881. [81] LAM O H Y, DOGOTARI M, PRüM M, et al. An open source workflow for weed mapping in native grassland using unmanned aerial vehicle: using Rumex obtusifolius as a case study[J]. European Journal of Remote Sensing, 2021, 54(S1): 71-88. [82] DE CAMARGO T, SCHIRRMANN M, LANDWEHR N, et al. Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops[J]. Remote Sensing, 2021, 13(9): 1704. [83] ZOU K L, CHEN X, ZHANG F, et al. A field weed density evaluation method based on UAV imaging and modified U-net[J]. Remote Sensing, 2021, 13(2): 310. [84] KHAN S, TUFAIL M, KHAN M T, et al. A novel semi- supervised framework for UAV based crop/weed classification[J]. PLoS One, 2021, 16(5): e0251008. [85] GALLO I, REHMAN A U, DEHKORDI R H, et al. Deep object detection of crop weeds: performance of YOLOv7 on a real case dataset from UAV images[J]. Remote Sensing, 2023, 15(2): 539. [86] KHAN S, TUFAIL M, KHAN M T, et al. Real-time recognition of spraying area for UAV sprayers using a deep learning approach[J]. PLoS One, 2021, 16(4): e0249436. [87] UKAEGBU U F, TARTIBU L K, OKWU M O, et al. Development of a light-weight unmanned aerial vehicle for precision agriculture[J]. Sensors, 2021, 21(13): 4417. [88] KHAN S, TUFAIL M, KHAN M T, et al. Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer[J]. Precision Agriculture, 2021, 22(6): 1711-1727. [89] HUANG H S, LAN Y B, YANG A Q, et al. Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery[J]. International Journal of Remote Sensing, 2020, 41(9): 3446-3479. [90] ETIENNE A, AHMAD A, AGGARWAL V, et al. Deep learning-based object detection system for identifying weeds using UAS imagery[J]. Remote Sensing, 2021, 13(24): 5182. [91] 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228. JIANG H H, ZHANG C Y, ZHANG Z, et al. Detection method of corn weed based on mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 220-228. [92] ASAD M H, BAIS A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network[J]. Information Processing in Agriculture, 2020, 7(4): 535-545. [93] HASHEMI-BENI L, GEBREHIWOT A, KARIMODDINI A, et al. Deep convolutional neural networks for weeds and crops discrimination from UAS imagery[J]. Frontiers in Remote Sensing, 2022, 3: 755939. [94] JIN X J, CHE J, CHEN Y. Weed identification using deep learning and image processing in vegetable plantation[J]. IEEE Access, 2021, 9: 10940-10950. [95] YOU J, LIU W, LEE J. A DNN-based semantic segmentation for detecting weed and crop[J]. Computers and Electronics in Agriculture, 2020, 178: 105750. [96] NASIRI A, OMID M, TAHERI-GARAVAND A, et al. Deep learning-based precision agriculture through weed recognition in sugar beet fields[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100759. [97] JIANG Z C. A novel crop weed recognition method based on transfer learning from VGG16 implemented by keras[J]. IOP Conference Series: Materials Science and Engineering, 2019, 677(3): 032073. [98] GENZE N, WIRTH M, SCHREINER C, et al. Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model[J]. Plant Methods, 2023, 19(1): 87. [99] FATHIPOOR H, SHAH-HOSSEINI R, AREFI H. Crop and weed segmentation on ground-based images using deep convolutional neural network[J]. ISPRS Annals of the Photo-grammetry, Remote Sensing and Spatial Information Sciences, 2023, X-4/W1-2022: 195-200. [100] BENCHALLAL F, HAFIANE A, RAGOT N, et al. Conv-NeXt based semi-supervised approach with consistency regularization for weeds classification[J]. Expert Systems with Applications, 2024, 239: 122222. [101] ABDULSALAM M, AOUF N. Deep weed detector/classifier network for precision agriculture[C]//Proceedings of the 2020 28th Mediterranean Conference on Control and Automation, 2020: 1087-1092. [102] CHAVAN T R, NANDEDKAR A V. AgroAVNET for crops and weeds classification: a step forward in automatic farming[J]. Computers and Electronics in Agriculture, 2018, 154: 361-372. [103] KHAN A, ILYAS T, UMRAIZ M, et al. CED-net: crops and weeds segmentation for smart farming using a small cascaded encoder-decoder architecture[J]. Electronics, 2020, 9(10): 1602. [104] TAO T, WEI X H. A hybrid CNN-SVM classifier for weed recognition in winter rape field[J]. Plant Methods, 2022, 18(1): 29. [105] VYPIRAILENKO D, KISELEVA E, SHADRIN D, et al. Deep learning techniques for enhancement of weeds growth classification[C]//Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference. Piscataway: IEEE, 2021: 1-6. [106] ANUL HAQ M. CNN based automated weed detection system using UAV imagery[J]. Computer Systems Science and Engineering, 2022, 42(2): 837-849. [107] ARUN R A, UMAMAHESWARI S, JAIN A V. Reduced U-Net architecture for classifying crop and weed using pixel-wise segmentation[C]//Proceedings of the 2020 IEEE International Conference for Innovation in Technology. Piscataway: IEEE, 2020: 1-6. [108] GA?PAROVI? M, ZRINJSKI M, BARKOVI? ?, et al. An automatic method for weed mapping in oat fields based on UAV imagery[J]. Computers and Electronics in Agriculture, 2020, 173: 105385. [109] FAWAKHERJI M. Crop and weed classification using pixel-wise segmentation on ground and aerial images[J]. International Journal of Robotic Computing, 2020, 2(1): 39-57. [110] RAEVA P L, ?EDINA J, DLESK A. Monitoring of crop fields using multispectral and thermal imagery from UAV[J]. European Journal of Remote Sensing, 2019, 52(S1): 192-201. [111] GUO Y H, WANG H X, WU Z F, et al. Modified red blue vegetation index for chlorophyll estimation and yield prediction of maize from visible images captured by UAV[J]. Sensors, 2020, 20(18): 5055. [112] ROSLE R, SULAIMAN N, CHEYA N N, et al. Weed detection in rice fields using UAV and multispectral aerial imagery[C]//Proceedings of the 1st International Online Conference on Agriculture: Advances in Agricultural Science and Technology, 2022. [113] YANG Q, SHI L S, HAN J Y, et al. A near real-time deep learning approach for detecting rice phenology based on UAV images[J]. Agricultural and Forest Meteorology, 2020, 287: 107938. [114] XIA F L, QUAN L Z, LOU Z X, et al. Identification and comprehensive evaluation of resistant weeds using unmanned aerial vehicle-based multispectral imagery[J]. Frontiers in Plant Science, 2022, 13: 938604. [115] GUO Z Q, GOH H H, LI X H, et al. WeedNet-R: a sugar beet field weed detection algorithm based on enhanced RetinaNet and context semantic fusion[J]. Frontiers in Plant Science, 2023, 14: 1226329. [116] SAFONOVA A, GUIRADO E, MAGLINETS Y, et al. Olive tree biovolume from UAV multi-resolution image segmentation with mask R-CNN[J]. Sensors, 2021, 21(5): 1617. [117] THOMAS L F, ?N?KK?L? M, LAJUNEN A. Weakly supervised perennial weed detection in a barley field[J]. Remote Sensing, 2023, 15(11): 2877. [118] GUPTA S K, YADAV S K, SONI S K, et al. Multiclass weed identification using semantic segmentation: an automated approach for precision agriculture[J]. Ecological Informatics, 2023, 78: 102366. [119] WANG S B, HAN Y, CHEN J, et al. Weed density extraction based on few-shot learning through UAV remote sensing RGB and multispectral images in ecological irrigation area[J]. Frontiers in Plant Science, 2022, 12: 735230. [120] KHOSHBORESH-MASOULEH M, AKHOONDZADEH M. Improving weed segmentation in sugar beet fields using potentials of multispectral unmanned aerial vehicle images and lightweight deep learning[J]. Journal of Applied Remote Sensing, 2021, 15: 034510. [121] OSORIO K, PUERTO A, PEDRAZA C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images[J]. AgriEngineering, 2020, 2(3): 471-488. [122] SA I, CHEN Z T, POPOVI? M, et al. WeedNet: dense semantic weed classification using multispectral images and MAV for smart farming[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 588-595. [123] NAVEED A, MUHAMMAD W, IRSHAD M J, et al. Saliency-based semantic weeds detection and classification using UAV multispectral imaging[J]. IEEE Access, 2023, 11: 11991-12003. [124] FAWAKHERJI M, POTENA C, PRETTO A, et al. Multi-spectral image synthesis for crop/weed segmentation in precision farming[J]. Robotics and Autonomous Systems, 2021, 146: 103861. [125] YIN J R, QI C S, CHEN Q Q, et al. Spatial-spectral network for hyperspectral image classification: a 3-D CNN and Bi-LSTM framework[J]. Remote Sensing, 2021, 13(12): 2353. [126] BOUGUETTAYA A, ZARZOUR H, KECHIDA A, et al. Deep learning techniques to classify agricultural crops through UAV imagery: a review[J]. Neural Computing & Applications, 2022, 34(12): 9511-9536. [127] NING K P, ZHAO X, LI Y, et al. Active learning for open-set annotation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 41-49. [128] RAJAKANI M, KAVITHA R J. Invasive weed optimization with deep transfer learning for multispectral image classification model[J]. Multimedia Tools and Applications, 2024, 83(15): 45519-45534. [129] YU J L, SCHUMANN A W, SHARPE S M, et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks[J]. Weed Science, 2020, 68(5): 545-552. [130] ZOU K L, LIAO Q F, ZHANG F, et al. A segmentation network for smart weed management in wheat fields[J]. Computers and Electronics in Agriculture, 2022, 202: 107303. [131] MAKANAPURA N, SUJATHA C, PATIL P R, et al. Classification of plant seedlings using deep convolutional neural network architectures[J]. Journal of Physics: Conference Series, 2022, 2161(1): 012006. |
| [1] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [2] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [3] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| [4] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| [5] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [6] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [7] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
| [8] | WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140. |
| [9] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
| [10] | ZHOU Ke, CHANG Ranran, XU Xizhi, MIAO Ru, ZHANG Guangyu, WANG Jiaqian. Water Body Extraction Method Based on ConvNeXt and Dual Feature Extraction Branch [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1264-1279. |
| [11] | LI Zhijie, CHENG Xin, LI Changhua, GAO Yuan, XUE Jingyu, JIE Jun. Cross-Modal Multi-level Feature Fusion for Semantic Segmentation of Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 989-1000. |
| [12] | LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin. Dual Graph Attention Model for Multivariate Time Series Anomaly Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064. |
| [13] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [14] | LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao. Overview of Applications and Research Directions of Deep Learning Methods for Wind Power Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 602-622. |
| [15] | MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/