
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (6): 1455-1475.DOI: 10.3778/j.issn.1673-9418.2406102
• Frontiers·Surveys • Previous Articles Next Articles
LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai
Online:2025-06-01
Published:2025-05-29
梁洁欣,冯跃,李健忠,陈涛,林卓胜,何盈,王松柏
LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475.
梁洁欣, 冯跃, 李健忠, 陈涛, 林卓胜, 何盈, 王松柏. 中医体质智能辨识方法的研究综述[J]. 计算机科学与探索, 2025, 19(6): 1455-1475.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2406102
| [1] 王琦, 盛增秀. 中医体质学说[M]. 南京: 江苏科学技术出版社, 1982. WANG Q, SHENG Z X. Constitution theory of traditional Chinese medicine[M]. Nanjing: Phoenix Science Press, 1982. [2] 王琦. 9种基本中医体质类型的分类及其诊断表述依据[J]. 北京中医药大学学报, 2005, 28(4): 1-8. WANG Q. Classification and diagnosis basis of nine basic constitutions in Chinese medicine[J]. Journal of Beijing University of Traditional Chinese Medicine, 2005, 28(4): 1-8. [3] 王琦. 中医体质学说研究现状与展望[J]. 中国中医基础医学杂志, 2002, 8(2): 6-15. WANG Q. Status and prospect of constitutional theory in traditional Chinese medicine[J]. China Journal of Basic Medicine in Traditional Chinese Medicine, 2002, 8(2): 6-15. [4] 王琦, 朱燕波, 薛禾生, 等. 中医体质量表的初步编制[J]. 中国临床康复, 2006, 10(3): 12-14. WANG Q, ZHU Y B, XUE H S, et al. Primary compiling of constitution in Chinese medicine questionnaire[J]. Chinese Journal of Clinical Rehabilitation, 2006, 10(3): 12-14. [5] 中华中医药学会. 中医体质分类与判定(ZYYXH/T157-2009)[J]. 世界中西医结合杂志, 2009, 4(4): 303-304. China Association of Chinese Medicine. Classification and determination of constitution in TCM(ZYYXH/T157-2009)[J]. World Journal of Integrated Traditional and Western Medicine, 2009, 4(4): 303-304. [6] MAHESH B. Machine learning algorithms - a review[J]. International Journal of Science and Research, 2020, 9(1): 381-386. [7] GUO Y M, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27-48. [8] 孟小峰, 慈祥. 大数据管理: 概念、技术与挑战[J]. 计算机研究与发展, 2013, 50(1): 146-169. MENG X F, CI X. Big data management: concepts, techniques and challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169. [9] OTT L, LONGNECKER M. An introduction to statistical methods and data analysis[M]. Cengage Learning, 2010. [10] WU H K, KO Y S, LIN Y S, et al. The correlation between pulse diagnosis and constitution identification in traditional Chinese medicine[J]. Complementary Therapies in Medicine, 2017, 30: 107-112. [11] KUNG Y Y, KUO T B J, LAI C T, et al. Disclosure of suboptimal health status through traditional Chinese medicine-based body constitution and pulse patterns[J]. Complementary Therapies in Medicine, 2021, 56: 102607. [12] SHEN T R, WANG S P, WANG Z H, et al. Association between the traditional Chinese medicine constitution and metabolic dysfunction-associated fatty liver disease in older people: a cross-sectional study[J]. Heliyon, 2024, 10(3): e24905. [13] CHEN C M, LIN S J, TSAI Y N, et al. Association between traditional Chinese medicine body constitution deviation and chronic pelvic pain: a cross-sectional study[J]. Taiwanese Journal of Obstetrics and Gynecology, 2023, 62(5): 713-718. [14] FANG Y X, LUO L, LI R H. Application of traditional Chinese medicine syndrome differentiation in identification of body constitution of hypertensive and diabetic patients[J]. American Journal of Translational Research, 2021, 13(10): 12034-12042. [15] XIE H T, WU X Y, LI N, et al. Exploratory correlation analysis of ear morphological features and traditional Chinese medicine constitutions based on inspection diagnosis[J]. Journal of Traditional Chinese Medical Sciences, 2023, 10(4): 470-483. [16] SU S Y, YANG C H, CHIU C C, et al. Acoustic features for identifying constitutions in traditional Chinese medicine[J]. Journal of Alternative and Complementary Medicine, 2013, 19(6): 569-576. [17] HUANG C J, LIN H J, LIAO W L, et al. Diagnosis of traditional Chinese medicine constitution by integrating indices of tongue, acoustic sound, and pulse[J]. European Journal of Integrative Medicine, 2019, 27: 114-120. [18] TAN X R, LI Y G. Using grey relational analysis to analyze the medical data[J]. Kybernetes, 2004, 33(2): 355-362. [19] LUO Y, JIANG L X, YANG S W, et al. Grey correlation analysis on influencing factors of Yang deficiency constitution[J]. Digital Chinese Medicine, 2023, 6(2): 151-159. [20] NESHAT M, SEPIDNAM G, SARGOLZAEI M, et al. Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications[J]. Artificial Intelligence Review, 2014, 42(4): 965-997. [21] YANG F, TANG G L, JIN H M. Knowledge mining of traditional Chinese medicine constitution classification rules based on artificial fish school algorithm[C]//Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks. Piscataway: IEEE, 2011: 462-466. [22] LIU Y, ZHANG X L, ZHANG M C, et al. A TCM constitution analysis algorithm based on association rules in Hadoop framework[C]//Proceedings of the 2020 35th Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2020: 172-177. [23] BORGELT C. An implementation of the FP-growth algorithm[C]//Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations. New York: ACM, 2005: 1-5. [24] BORTHAKUR D. The Hadoop distributed file system: architecture and design[R]. 2007. [25] HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. [26] PETERSON L. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883. [27] SONG Y Y, LU Y. Decision tree methods: applications for classification and prediction[J]. Shanghai Archives of Psychiatry, 2015, 27(2): 130-135. [28] BREIMAN L. Random forests[J]. Machine Learning, 2001,45: 5-32. [29] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. [30] KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems 30, 2017: 3146-3154. [31] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. [32] KRISHNA K, NARASIMHA MURTY M. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(3): 433-439. [33] YU R X, ZHAO X H, LI L R, et al. Consistency between traditional Chinese medicine constitution-based classification and genetic classification[J]. Journal of Traditional Chinese Medical Sciences, 2015, 2(4): 248-257. [34] LI N, ZHAO Y P, MAO X B, et al. Physical constitution discrimination based on pulse characteristics[C]//Proceedings of the 14th International Conference on Bio-inspired Computing: Theories and Applications. Singapore: Springer, 2020: 359-370. [35] LI N, YU J R, MAO X B, et al. Analysis of body constitutions discrimination based on radial pulse wave by SVM[J]. International Journal of Medical Engineering and Informatics, 2023, 15(1): 45. [36] DEVI G U, MARY ANITA E A. An analysis of tongue shape to identify diseases by using supervised learning techniques[C]//Proceedings of the 2017 International Conference on Information Communication and Embedded Systems. Piscataway: IEEE, 2017: 1-4. [37] LIU M F, XU Y T, WU H, et al. Blood stasis constitution and depression among Chinese female college students: a longitudinal moderation model[J]. International Journal of Mental Health and Addiction, 2023, 21(2): 929-943. [38] ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. [39] 严玲, 周作建, 宋懿花, 等. 基于ML-kNN多标记学习的中医体质辨识模型研究[J]. 世界科学技术-中医药现代化, 2020, 22(10): 3558-3562. YAN L, ZHOU Z J, SONG Y H, et al. Study on the identification model of traditional Chinese medicine constitutions based on ML-kNN multi-label learning[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2020, 22(10): 3558-3562. [40] YEN S J, CHIU X D, YE S C. Intelligent online consultation system for body constitutions[C]//Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems. Piscataway: IEEE, 2021: 1-2. [41] 周逸平. 经络理论研究的重大战略意义和思路[J]. 安徽中医学院学报, 2010, 29(5): 71-74. ZHOU Y P. The great strategic significance and ideas of research on meridian theory[J]. Journal of Anhui Traditional Chinese Medical College, 2010, 29(5): 71-74. [42] PAN K N, HU G Q, HAO D M, et al. Research on the eight classifications of traditional Chinese medicine biased constitution based on random forest feature selection and SMOTE+ENN algorithm[C]//Proceedings of the 3rd International Conference on Computer Information and Big Data Applications, 2022: 1-4. [43] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [44] WILSON D L. Asymptotic properties of nearest neighbor rules using edited data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1972(3): 408-421. [45] HUANG C D, CHEN Y F, LI B T, et al. Traditional Chinese medicine constitution discrimination model based on meta-bolomics and random forest decision tree algorithm[J]. Evidence-Based Complementary and Alternative Medicine, 2022(1): 3490130. [46] LI S G, ZHU P, CAI G Y, et al. Application of machine learning models in predicting insomnia severity: an integrative approach with constitution of traditional Chinese medicine[J]. Frontiers in Medicine, 2023, 10: 1292761. [47] FAN B C, LI Y H, WEN G H, et al. Personalized body constitution inquiry based on machine learning[J]. Journal of Healthcare Engineering, 2020(1): 8834465. [48] FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2): 179-188. [49] HOU S J, ZHANG J, LI P, et al. Research on TCM constitution classification based on facial color and texture features[J]. Biomedical Research-India, 2017, 28(10): 4645-4650. [50] PITAS I. Digital image processing algorithms and applications[M]. Wiley-Interscience, 2000. [51] CHIEN P L, LIU C F, HUANG H T, et al. Application of artificial intelligence in the establishment of an association model between metabolic syndrome, TCM constitution, and the guidance of medicated diet care[J]. Evidence-Based Complementary and Alternative Medicine, 2021: 5530717. [52] LIU Y, GENG Y Y, YANG L Q, et al. Traditional Chinese medicine constitution and clinical data association with machine learning for prediction of spontaneous abortion[J]. Clinical Complementary Medicine and Pharmacology, 2022, 2(2): 100016. [53] TANG Y C, ZHAO T, HUANG N, et al. Identification of traditional Chinese medicine constitutions and physiological indexes risk factors in metabolic syndrome: a data mining approach[J]. Evidence-Based Complementary and Alternative Medicine, 2019: 1686205. [54] 潘康宁, 王洪杰, 于霞, 等. 基于机器学习的中医体质分类研究[J]. 中国医疗设备, 2024, 39(1): 6-11. PAN K N, WANG H J, YU X, et al. Research on traditional Chinese medicine constitution classification based on machine learning[J]. China Medical Devices, 2024, 39(1): 6-11. [55] ZHU L W. Research on identifying phlegm-damp constitution in obese people based on machine learning methods[C]//Proceedings of the 2020 International Conference on Computing and Data Science. Piscataway: IEEE, 2020: 169-173. [56] ZHAO M, ZHOU H Y, WANG J, et al. A new method for identification of traditional Chinese medicine constitution based on tongue features with machine learning[J]. Technology and Health Care, 2024, 32(5): 3393-3408. [57] PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]// Advances in Neural Information Processing Systems 31, 2018: 6639-6649. [58] DAI Y L, LONG Y N, XING X F, et al. Exploring body constitution in traditional Chinese medicine with K-means clustering[C]//Advances in Services Computing: Proceedings of the 10th Asia-Pacific Services Computing Conference. Cham: Springer, 2016: 52-64. [59] YUAN Y, LIAO W. Design and implementation of the traditional Chinese medicine constitution system based on the diagnosis of tongue and consultation[J]. IEEE Access, 2020, 9: 4266-4278. [60] 王济, 张惠敏, 李玲孺, 等. 王琦教授 “肤-体相关论” 的提出及其在皮肤病诊疗中的应用[J]. 北京中医药大学学报, 2013, 36(7): 476-479. WANG J, ZHANG H M, LI L R, et al. Theory of skin relating to constitution put forward by Professor WANG Qi and its application in dermatology[J]. Journal of Beijing University of Traditional Chinese Medicine, 2013, 36(7): 476-479. [61] 李爽, 张慧妍, 王立, 等. 多属性皮肤指标的中医体质模糊优化分类模型[J]. 计算机科学与探索, 2016, 10(7): 995-1002. LI S, ZHANG H Y, WANG L, et al. Fuzzy optimization classification model in Chinese medicine constitution of multi-attribute skin indexes[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(7): 995-1002. [62] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-288. [63] SHI G, CHEN Z, KANAYA S, et al. Prediction of body constitutions through life-style for health guidance[C]//Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies. Piscataway: IEEE, 2021: 106-107. [64] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88. [65] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408. [66] ZHANG M J, WEN G H, ZHONG J H, et al. Multi-label recognition of facial body constitution via MLP-like deep networks with non-equilibrium weight loss[J]. Biomedical Signal Processing and Control, 2024, 87: 105363. [67] RUMELHART D E, HINTON G E, WILLIAMS R J. Learn-ing representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. [68] 王颖纯, 白丽娜. 基于BP神经网络的中医脉诊体质类型判定[J]. 中医杂志, 2014, 55(15): 1288-1291. WANG Y C, BAI L N. Determination of constitution type in TCM pulse examination based on BP neural networks[J]. Journal of Traditional Chinese Medicine, 2014, 55(15): 1288-1291. [69] LI Z B. A back propagation artificial neural network applied to body constitution in traditional Chinese medicine modeling[J]. Advanced Materials Research, 2013, 659: 123-127. [70] LUO Y, LIN B, WEN C B, et al. Conducting a correlation model between TCM constitution and physical examination index based on BPNN algorithm[J]. Digital Chinese Medicine, 2018, 1(1): 84-89. [71] LUO Y, LIN B, WEN C B, et al. Constitution identification system for traditional Chinese medicine (TCM) based on correlation between TCM constitution and physical examination indices[J]. Digital Chinese Medicine, 2018, 1(2): 122-130. [72] LUO Y, LIN B, ZHAO S T, et al. Neural network-based study about correlation model between TCM constitution and physical examination indexes based on 950 physical examinees[J]. Journal of Healthcare Engineering, 2020(1): 8812678. [73] LUO Y, LIU Y N, LIN B, et al. Research on the correlation between physical examination indexes and TCM constitutions using the RBF neural network[J]. Digital Chinese Medicine, 2020, 3(1): 11-19. [74] MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294. [75] LI B, WEI Q H, ZHOU X Y. Research on model and algorithm of TCM constitution identification based on artificial intelligence[J]. Journal of Combinatorial Optimization, 2021, 42(4): 988-1003. [76] LI H T, XU B, WANG N Y, et al. Deep convolutional neural networks for classifying body constitution[C]//Proceedings of the 25th International Conference on Artificial Neural Networks. Cham: Springer, 2016: 128-135. [77] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, 2012: 1106-1114. [78] ZHOU H, HU G Q, ZHANG X F. Constitution identification of tongue image based on CNN[C]//Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2018: 1-5. [79] 周浩, 胡广芹, 张新峰. 基于舌图像深度特征融合的中医体质分类方法研究[J]. 北京生物医学工程, 2020, 39(3): 221-226. ZHOU H, HU G Q, ZHANG X F. Preliminary study on traditional Chinese medicine constitution classification method based on tongue image feature fusion[J]. Beijing Biomedical Engineering, 2020, 39(3): 221-226. [80] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. [81] HUAN E Y, WEN G H, ZHANG S J, et al. Deep convolutional neural networks for classifying body constitution based on face image[J]. Computational and Mathematical Methods in Medicine, 2017: 9846707. [82] 胡继礼, 丁亚涛, 阚红星. 基于机器学习的舌象体质分类[J]. 佳木斯大学学报(自然科学版), 2018, 36(5): 709-713. HU J L, DING Y T, KAN H X. Tongue body constitution classification based on machine learning[J]. Journal of Jiamusi University (Natural Science Edition), 2018, 36(5): 709-713. [83] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [84] WEN G H, MA J J, HU Y, et al. Grouping attributes zero-shot learning for tongue constitution recognition[J]. Artificial Intelligence in Medicine, 2020, 109: 101951. [85] LAI T, GUAN Y T, MEN S Y, et al. ResNet for recognition of Qi-deficiency constitution and balanced constitution based on voice[J]. Frontiers in Psychology, 2022, 13: 1043955. [86] MA Y C, WU C H, LI T. Semi-supervised learning for tongue constitution recognition[C]//Proceedings of the 14th International Conference on Graphics and Image Processing, 2023: 163-171. [87] ZHANG B W, WANG Y D, HOU W X, et al. FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling[C]//Advances in Neural Information Processing Systems 34, 2021: 18408-18419. [88] WEN G H, LIANG H Z, LI H H, et al. Interpretable tongue constitution recognition via reshaped wavelet attention[J]. International Journal of Computational Intelligence Systems, 2024, 17(1): 31. [89] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [90] CHEN L J, MEN S Y. DenseNet-CBAM for identifying damp-heat constitution and balanced constitution by human voice[C]//Proceedings of the 2023 8th International Conference on Biomedical Imaging, Signal Processing. New York: ACM, 2023: 110-114. [91] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-04-16]. https://arXiv.org/abs/1704.04861. [92] 胡继礼, 阚红星. 基于卷积神经网络的舌象分类[J]. 安庆师范大学学报(自然科学版), 2018, 24(4): 44-49. HU J L, KAN H X. Tongue classification based on convolutional neural network[J]. Journal of Anqing Normal University (Natural Science Edition), 2018, 24(4): 44-49. [93] MA J J, WEN G H, HU Y, et al. Tongue image constitution recognition based on complexity perception method[EB/OL]. [2024-04-16]. https://arXiv.org/abs/1803.00219. [94] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [95] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-04-16]. https://arXiv.org/abs/1409.1556. [96] LI H H, WEN G H, ZENG H B. Natural tongue physique identification using hybrid deep learning methods[J]. Multimedia Tools and Applications, 2019, 78(6): 6847-6868. [97] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [98] 董易杭, 王建勋, 王晶, 等. 基于深度学习的阳虚质与阴虚质舌象分类研究[J]. 中华中医药学刊, 2024, 42(7): 27-30. DONG Y H, WANG J X, WANG J, et al. Study of tongue image classification for Yang deficiency and Yin deficiency constitutions based on deep learning[J]. Chinese Archives of Traditional Chinese Medicine, 2024, 42(7): 27-30. [99] HUAN E Y, WEN G H. Multilevel and multiscale feature aggregation in deep networks for facial constitution classification[J]. Computational and Mathematical Methods in Medicine, 2019(1): 1258782. [100] ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8697-8710. [101] HUAN E Y, WEN G H. Transfer learning with deep convolutional neural network for constitution classification with face image[J]. Multimedia Tools and Applications, 2020, 79(17): 11905-11919. [102] LI T, WU C H, MA Y C. Multi-label constitution identification based on tongue image in traditional Chinese medicine[C]//Proceedings of the 2021 China Automation Congress. Piscataway: IEEE, 2021: 1617-1622. [103] GU T Y, YAN Z Z, JIANG J H. Classifying Chinese medicine constitution using multimodal deep-learning model[J]. Chinese Journal of Integrative Medicine, 2024, 30(2): 163-170. [104] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2024-04-25]. https:// arXiv.org/abs/1508.01991. [105] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-04-25]. https://arXiv.org/abs/1810. 04805. [106] XING Y H, YU B H, XU H S. A keyword extraction method for traditional Chinese medicine constitution identification based on batch data hybrid sampling[C]//Proceedings of the 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2023: 1666-1670. [107] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [108] WU X, FENG Y, XU H, et al. CTransCNN: combining transformer and CNN in multilabel medical image classification[J]. Knowledge-Based Systems, 2023, 281: 111030. [109] HU Q N, YU T, LI J H, et al. End-to-end syndrome differentiation of Yin deficiency and Yang deficiency in traditional Chinese medicine[J]. Computer Methods and Programs in Biomedicine, 2019, 174: 9-15. [110] DAI Y L, WANG G J. Analyzing tongue images using a conceptual alignment deep autoencoder[J]. IEEE Access, 2018, 6: 5962-5972. [111] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[EB/OL]. [2024-04-25]. https://arXiv.org/abs/1406.2661. [112] DAI Y L, WANG G J, DAI J H, et al. A multimodal deep architecture for traditional Chinese medicine diagnosis[J]. Concurrency and Computation: Practice and Experience, 2020, 32(19): e5781. [113] 林冰, 张欣悦, 张永康, 等. 中医体质辨识系统的设计与实现[J]. 成都中医药大学学报, 2016, 39(4): 123-125. LIN B, ZHANG X Y, ZHANG Y K, et al. The design and implementation of identification system for TCM constitution[J]. Journal of Chengdu University of Traditional Chinese Medicine, 2016, 39(4): 123-125. [114] 金叶桐, 张渝湘, 王泽朋. 中医体质分析APP设计与实现[J]. 科学技术创新, 2020(33): 99-100. JIN Y T, ZHANG Y X, WANG Z P. Design and implementation of Chinese medicine constitution analysis APP[J]. Scientific and Technological Innovation, 2020(33): 99-100. [115] 邸洁, 朱燕波, 王琦, 等. 不同年龄人群中医体质特点对应分析[J]. 中国中西医结合杂志, 2014, 34(5): 627-630. DI J, ZHU Y B, WANG Q, et al. Correspondence analysis of Chinese medical constitution features in different ages population[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2014, 34(5): 627-630. [116] 温英英, 李爽, 王云涛. 广东省不同经济发展区域成年人体质现状研究[J]. 当代体育科技, 2014, 4(3): 121-122. WEN Y Y, LI S, WANG Y T. Study on adult constitution in different economic development areas of Guangdong province[J]. Contemporary Sports Technology, 2014, 4(3): 121-122. [117] 孙书魁, 范菁, 孙中强, 等. 基于深度学习的图像数据增强研究综述[J]. 计算机科学, 2024, 51(1): 150-167. SUN S K, FAN J, SUN Z Q, et al. Survey of image data augmentation techniques based on deep learning[J]. Computer Science, 2024, 51(1): 150-167. [118] SHI G H, WANG J W, QIANG Y, et al. Knowledge-guided synthetic medical image adversarial augmentation for ultra-sonography thyroid nodule classification[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105611. [119] RATHER I H, KUMAR S. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks[J]. Multimedia Tools and Applications, 2024, 83(2): 6249-6271. [120] DAR S U, YURT M, KARACAN L, et al. Image synthesis in multi-contrast MRI with conditional generative adversarial networks[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2375-2388. [121] 王泽深, 杨云, 向鸿鑫, 等. 零样本学习综述[J]. 计算机工程与应用, 2021, 57(19): 1-17. WANG Z S, YANG Y, XIANG H X, et al. Survey on zero-shot learning[J]. Computer Engineering and Applications, 2021, 57(19): 1-17. [122] HOU W J, CHEN S M, CHEN S H, et al. Visual-augmented dynamic semantic prototype for generative zero-shot learning[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 23627-23637. [123] DONG X B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258. [124] 苏尤丽, 胡宣宇, 马世杰, 等. 人工智能在中医诊疗领域的研究综述[J]. 计算机工程与应用, 2024, 60(16): 1-18. SU Y L, HU X Y, MA S J, et al. Review of research on artificial intelligence in traditional Chinese medicine diagnosis and treatment[J]. Computer Engineering and Applications, 2024, 60(16): 1-18. [125] TANG R, HAN X, JIANG X, et al. Does synthetic data generation of LLMs help clinical text mining?[EB/OL]. [2024-04-25]. https://arXiv.org/abs/2303.04360. [126] CHEN S, KANN B H, FOOTE M B, et al. The utility of ChatGPT for cancer treatment information[EB/OL]. [2024-04-25]. https://doi.org/10.1101/2023.03.16.23287316. [127] JEBLICK K, SCHACHTNER B, DEXL J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports[J]. European Radiology, 2024, 34(5): 2817-2825. [128] GUO B Y, ZHANG X, WANG Z Y, et al. How close is ChatGPT to human experts? Comparison corpus, evaluation, and detection[EB/OL]. [2024-04-25]. https://arXiv.org/abs/2301.07597. [129] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929. [130] HUBERMAN B A, HOGG T. Phase transitions in artificial intelligence systems[J]. Artificial Intelligence, 1987, 33(2): 155-171. |
| [1] | XU Guangyuan, ZHANG Yaqiang, SHI Hongzhi. Review of Fault-Tolerant Technologies for Large-Scale DNN Training Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1771-1788. |
| [2] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [3] | ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728. |
| [4] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [5] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [6] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [7] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [8] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| [9] | LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo. Review of Deep Learning Applications in Unmanned Aerial Vehicle Remote Sensing Images of Grass Plants [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1157-1176. |
| [10] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
| [11] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
| [12] | WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140. |
| [13] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [14] | LIU Zhexu, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao, SHI Jianping. Review of Smart Contract Vulnerability Detection and Repair Research [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876. |
| [15] | LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin. Dual Graph Attention Model for Multivariate Time Series Anomaly Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/