Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (11): 2940-2953.DOI: 10.3778/j.issn.1673-9418.2406057
• Special Issue on Constructions and Applications of Large Language Models in Specific Domains • Previous Articles Next Articles
LIU Xin, GAO Huiquan, SHAO Changheng, CHEN Ziliang, LU Wenjuan, YANG Huiru
Online:
2024-11-01
Published:
2024-10-31
刘昕,高会泉,邵长恒,陈子良,卢文娟,杨会如
LIU Xin, GAO Huiquan, SHAO Changheng, CHEN Ziliang, LU Wenjuan, YANG Huiru. Construction and Application of Large Language Model for Public Complaints with Knowledge Reasoning and Similarity Retrieval[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2940-2953.
刘昕, 高会泉, 邵长恒, 陈子良, 卢文娟, 杨会如. 融合知识推理与相似度检索的民众诉求大模型构建与应用[J]. 计算机科学与探索, 2024, 18(11): 2940-2953.
[1] 曹海军, 沈博仟. “枫桥经验”数智创新:技术平台与群众路线的融合机制研究——以Y市“政务热线+网格”模式为例[J]. 河南社会科学, 2024, 32(6): 117-124. CAO H J, SHEN B Q. “Fengqiao Experience”digital in-telligence innovation: research on the integration mecha-nism of technology platform and mass line—taking the“Government Hotline + Grid”model of Y city as an example[J]. Henan Social Sciences, 2024, 32(6): 117-124. [2] 娄文龙, 王晓萌, 王晓慧. 数字技术如何引发基层政府的行为策略?——基于B市C区12345政务服务便民热线的案例分析[J]. 天津行政学院学报, 2024, 26(3): 27-36. LOU W L, WANG X M, WANG X H. How can digital technologies trigger the behavioral strategies of the grass-roots government?—Case analysis based on 12345 government service convenience hotline in C district of B city[J]. Journal of Tianjin Administration Institute, 2024, 26(3): 27-36. [3] BAWDEN D, ROBINSON L. The dark side of information: over-load, anxiety and other paradoxes and pathologies[J]. Journal of Information Science, 2009, 35(2): 180-191. [4] ABUJABAL A, YAHYA M, RIEDEWALD M, et al. Automated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1191-1200. [5] CHEN B, SUN L, HAN X. Sequence-to-action: end-to-end semantic graph generation for semantic parsing[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1809.00773. [6] BORDES A, CHOPRA S, WESTON J. Question answering with subgraph embeddings[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1406.3676. [7] YANG H, LIU X Y, WANG C D. FinGPT: open-source financial large language models[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2306.06031. [8] 张金营, 王天堃, 么长英, 等. 基于大语言模型的电力知识库智能问答系统构建与评价[J/OL]. 计算机科学 [2024-05-31]. http://kns.cnki.net/kcms/detail/50.1075.TP.20240528. 0931.002.html. ZHANG J Y, WANG T K, YAO C Y, et al. Construction and evaluation of intelligent question answering system for electric power knowledge base based on large language model[J/OL]. Computer Science [2024-05-31]. http://kns. cnki.net/kcms/detail/50.1075.TP.20240528.0931.002.html. [9] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388. ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388. [10] 王珊珊. 智道奇点政务服务人工智能大模型亮相[N]. 中国建设报, 2024-05-30(2). WANG S S. Smart Dodge Point government service artificial intelligence large model unveiled[N]. China Construction News, 2024-05-30(2). [11] 舒抒. 窗口人员业务精湛,为何还要大模型[N]. 解放日报, 2024-06-26(2). SHU S. Window staff business is superb, why do you want a large model[N]. Liberation Daily, 2024-06-26(2). [12] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 9459-9474. [13] CHEN H X, LI Y Q, SHI S Y, et al. Graph collaborative reasoning[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 75-84. [14] 黄家豪, 王冰, 唐漾. 化工安全知识图谱的本体设计与基于规则推理的知识补全[J/OL]. 控制工程 [2024-08-03]. https://doi.org/10.14107/j.cnki.kzgc.20240077. HUANG J H, WANG B, TANG Y. Ontology design of chemical safety knowledge graph and a rule-based inference approach for knowledge completion[J/OL]. Control Engineering of China [2024-08-03]. https://doi.org/10.14107/ j.cnki.kzgc.20240077. [15] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake?Tahoe, Dec?5-8, 2013: 2787-2795. [16] LI Z, LIU X, WANG X, et al. TransO: a knowledge-driven representation learning method with ontology information constraints[J]. World Wide Web, 2023, 26(1): 297-319. [17] 彭鐄, 曾维新, 周杰, 等. 基于图神经网络的实体对齐表示学习方法比较研究[J]. 计算机科学与探索, 2023, 17(10): 2343-2357. PENG H, ZENG W X, ZHOU J, et al. Contrast research of representation learning in entity alignment based on graph neural network[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2343-2357. [18] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1911.03082. [19] ZHANG Y Q, YAO Q M. Knowledge graph reasoning with relational digraph[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 912-924. [20] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using know-ledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4498-4507. [21] 田侃, 曹新汶, 张浩然, 等. 结合图卷积模型和共享编码的知识图谱问答方法[J/OL]. 计算机工程与应用 [2024-08-03]. http://kns.cnki.net/kcms/detail/11.2127.TP.20240625.1053. 002.html. TIAN K, CAO X W, ZHANG H R, et al. Knowledge graph question answering with shared encoding and graph convolution networks[J/OL]. Computer Engineering and Applications [2024-08-03]. http://kns.cnki.net/kcms/detail/11.2127. TP.20240625.1053.002.html. [22] KASNECI E, SE?LER K, KüCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274. [23] 朱娜娜, 王航, 张家乐, 等. 基于预训练语言模型的政策识别研究[J]. 中文信息学报, 2022, 36(2): 104-110. ZHU N N, WANG H, ZHANG J L, et al. Policy identification based on pretrained language model[J]. Journal of Chinese Information Processing, 2022, 36(2): 104-110. [24] 华斌, 康月, 范林昊. 政策文本的知识建模与关联问答研究[J]. 数据分析与知识发现, 2022, 6(11): 79-92. HUA B, KANG Y, FAN L H. Knowledge modeling and association Q&A for policy texts[J]. Data Analysis and Knowledge Discovery, 2022, 6(11): 79-92. [25] 王昀, 胡珉, 塔娜, 等. 大语言模型及其在政务领域的应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 649-658. WANG Y, HU M, TA N, et al. Large language models and their application in government affairs[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(4): 649-658. [26] SHANAHAN M. Talking about large language models[J]. Communications of the ACM, 2024, 67(2): 68-79. [27] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 1877-1901. [28] CHOWDHERY A, NARANG S, DEVLIN J, et al. Palm: scaling language modeling with pathways[J]. Journal of Machine Learning Research, 2023, 24. [29] 杨波, 孙晓虎, 党佳怡, 等. 面向医疗问答系统的大语言模型命名实体识别方法[J]. 计算机科学与探索, 2023, 17(10): 2389-2402. YANG B, SUN X H, DANG J Y, et al. Named entity recognition method of large language model for medical question answering system[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2389-2402. [30] JI Z, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation[J]. ACM Computing Surveys, 2023, 55(12): 1-38. [31] 李源, 马新宇, 杨国利, 等. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10): 2358-2376. LI Y, MA X Y, YANG G L, et al. Survey of causal inference for knowledge graphs and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376. [32] RAJANI N F, MCCANN B, XIONG C, et al. Explain yourself! Leveraging language models for commonsense reasoning[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1906.02361. [33] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 24824-24837. [34] LI S, GAO Y, JIANG H, et al. Graph reasoning for question answering with triplet retrieval[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2305.18742. [35] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J/OL]. 数据分析与知识发现 [2024-06-01]. http://kns.cnki.net/kcms/detail/10.1478.G2.20231110.1612.002.html. WEN S, QIAN L, HU M D, et al. A survey of research progress of question answering technology based on large language model[J/OL]. Data Analysis and Knowledge Discovery [2024-06-01]. http://kns.cnki.net/kcms/detail/10.1478. G2.20231110.1612.002.html. [36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1810.04805. [37] HU Z, DONG Y, WANG K, et al. Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2704-2710. [38] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2106.09685. |
[1] | XIANG Xiaowei, SHEN Yanguang, HU Minghao, YAN Tianwei, LUO Wei, LUO Zhunchen. Research on Science and Technology Policy and Regulation Q&A System Driven by Large Models [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2349-2360. |
[2] | LI Yifei, ZHANG Lingling, DONG Yuxuan, WANG Jiaxin, ZHONG Yujie, WEI Bifan. Large Language Model Augmentation and Feature Alignment Method for Few-Shot Continual Relation Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2326-2336. |
[3] | JI Guiyang, WANG Peiyan, YU Zhuo. Research on Knowledge Injection Method for Large Language Model Oriented to Process Specification Texts [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2361-2369. |
[4] | CHEN Longfei, GAO Xin, HOU Haotian, YE Chuyang, LIU Ya'ou, ZHANG Meihui. Application of Generative Large Language Models in Chinese Radiology Domain [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2337-2348. |
[5] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
[6] | LUO Shijie, JIN Rize, HAN Shuzhen. Research on University Basic Knowledge Question-Answering Using Low-Rank Encoding to Optimize Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2156-2168. |
[7] | SHENG Lei, CHEN Xiliang, LAI Jun. Offline Multi-agent Reinforcement Learning Method Based on Latent State Distribution GPT [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2169-2179. |
[8] | ZHANG Qi, ZHONG Hao. Submodular Optimization Approach for Entity Summarization in Knowledge Graph Driven by Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1806-1813. |
[9] | FENG Jun, CHANG Yanghong, LU Jiamin, TANG Hailin, LYU Zhipeng, QIU Yuchun. Construction and Application of Knowledge Graph for Water Engineering Scheduling Based on Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647. |
[10] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
[11] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
[12] | ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. |
[13] | CHEN Jiaxing, HU Zhiwei, LI Ru, HAN Xiaoqi, LU Jiang, YAN Zhichao. Knowledge Graph Link Prediction Fusing Description and Structural Features [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 486-495. |
[14] | CHANG Yu, WANG Gang, ZHU Peng, KONG Lingfei, HE Jingheng. Survey of Research on Construction Method of Industry Internet Security Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 279-300. |
[15] | ZHU Yi, WANG Gensheng, JIN Wenwen, HUANG Xuejian, LI Sheng. Network Rumor Detection Based on Enhanced Textual Semantics and Weighted Comment Stance [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3311-3323. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/