[1] 郑娅峰, 赵亚宁, 白雪, 等. 教育大数据可视化研究综述[J]. 计算机科学与探索, 2021, 15(3): 403-422.
ZHENG Y F, ZHAO Y N, BAI X, et al. Survey of big data visualization in education[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 403-422.
[2] 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40.
WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40.
[3] HUANG X X, XUE Y N, REN S Y, et al. Sensor-based wearable systems for monitoring human motion and posture: a review[J]. Sensors, 2023, 23(22): 9047.
[4] CAI Y J, LI X G, LI J S. Emotion recognition using different sensors, emotion models, methods and datasets: a comprehensive review[J]. Sensors, 2023, 23(5): 2455.
[5] 刘清堂, 何皓怡, 吴林静, 等. 基于人工智能的课堂教学行为分析方法及其应用[J]. 中国电化教育, 2019(9): 13-21.
LIU Q T, HE H Y, WU L J, et al. Classroom teaching behavior analysis method based on artificial intelligence and its application[J]. China Educational Technology, 2019(9): 13-21.
[6] ZHOU J, RAN F, LI G, et al. Classroom learning status assessment based on deep learning[J]. Mathematical Problems in Engineering, 2022(1): 7049458.
[7] ZHANG S W, LIU H, SUN C, et al. MSTA-SlowFast: a student behavior detector for classroom environments[J]. Sensors, 2023, 23(11): 5205.
[8] 董琪琪, 刘剑飞, 郝禄国, 等. 基于改进SSD算法的学生课堂行为状态识别[J]. 计算机工程与设计, 2021, 42(10): 2924-2930.
DONG Q Q, LIU J F, HAO L G, et al. Student action recognition based on improved SSD algorithm[J]. Computer Engineering and Design, 2021, 42(10): 2924-2930.
[9] 谭暑秋, 汤国放, 涂媛雅, 等. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184.
TAN S Q, TANG G F, TU Y Y, et al. Classroom monitoring students abnormal behavior detection system[J]. Computer Engineering and Applications, 2022, 58(7): 176-184.
[10] XUE P, CHEN T, ZHAO X L, et al. A study of lightweight classroom abnormal behavior recognition by incorporating ODConv[C]//Proceedings of the 2023 5th International Conference on Frontiers Technology of Information and Computer. Piscataway: IEEE, 2023: 491-500.
[11] WANG Z F, WANG M H, ZENG C Y, et al. SBD-Net: incorporating multi-level features for an efficient detection network of student behavior in smart classrooms[J]. Applied Sciences, 2024, 14(18): 8357.
[12] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7369-7378.
[13] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[14] 施宇, 王乐, 姚叶鹏, 等. 基于强化特征金字塔和聚焦损失的小目标检测[J]. 计算机科学与探索, 2025, 19(3): 693-702.
SHI Y, WANG L, YAO Y P, et al. Small object detection based on enhanced feature pyramid and Focal-AIoU loss[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 693-702.
[15] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 629148.
YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148.
[16] 吕伏, 傅宇恒, 贺丽娜, 等. 三维多层次特征协同的无人机遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(5): 1301-1317.
LYU F, FU Y H, HE L N, et al. UAV remote sensing object detection based on 3D multi-layer feature collaboration[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1301-1317.
[17] XU S B, ZHENG S C, XU W H, et al. HCF-Net: hierarchical context fusion network for infrared small object detection[EB/OL]. [2024-11-14]. https://arxiv.org/abs/2403.10778.
[18] YU W H, ZHOU P, YAN S C, et al. InceptionNeXt: when inception meets ConvNeXt[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5672-5683.
[19] HE H, YANG D F, WANG S C, et al. Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss[J]. Remote Sensing, 2019, 11(9): 1015.
[20] YANG F, WANG T, YANG F, et al. SCB-Dataset3: a benchmark for detecting student classroom behavior[EB/OL]. [2024-11-14]. https://arxiv.org/abs/2310.02522.
[21] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10781-10790.
[22] LIU R M, SU W H. APHS-YOLO: a lightweight model for real-time detection and classification of stropharia rugoso-annulata[J]. Foods, 2024, 13(11): 1710.
[23] GAO L, YU P W, DONG H J, et al. Multi-scale fusion lightweight target detection method for coal and gangue based on EMBS-YOLOv8s[J]. Sensors, 2025, 25(6): 1734.
[24] ZENG J Y, ZHONG H. YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model[J]. Scientific Reports, 2024, 14: 12052.
[25] 曾钰琦, 刘博, 钟柏昌, 等. 智慧教育下基于改进YOLOv8的学生课堂行为检测算法[J]. 计算机工程, 2024, 50(9): 344-355.
ZENG Y Q, LIU B, ZHONG B C, et al. Student classroom behavior detection algorithm based on improved YOLOv8 in smart education[J]. Computer Engineering, 2024, 50(9): 344-355.
[26] XU Q, WEI Y, GAO J, et al. ICAPD framework and simAM-YOLOv8n for student cognitive engagement detection in classroom[J]. IEEE Access, 2023, 11: 136063-136076. |