
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (8): 2123-2134.DOI: 10.3778/j.issn.1673-9418.2407042
• Graphics·Image • Previous Articles Next Articles
LIU Ying, FENG Xiaodong, HE Jinglu
Online:2025-08-01
Published:2025-07-31
刘颖,冯小东,何敬鲁
LIU Ying, FENG Xiaodong, HE Jinglu. Zero-Shot Image Classification Based on Feature Enhancement and Contrastive Embedding[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2123-2134.
刘颖, 冯小东, 何敬鲁. 基于特征增强和对比嵌入的零样本图像分类算法[J]. 计算机科学与探索, 2025, 19(8): 2123-2134.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2407042
| [1] DU Y X, LI X. Recursive deep residual learning for single image dehazing[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 843-8437. [2] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. [3] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2024-05-16]. https://arxiv.org/abs/1905.11946. [4] XIAN Y Q, LAMPERT C H, SCHIELE B, et al. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9): 2251-2265. [5] LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks[C]//Proceedings of the 23rd National Conference on Artificial intelligence, 2008: 646-651. [6] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 951-958. [7] FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1778-1785. [8] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2024-05-16]. https://arxiv.org/abs/1301.3781. [9] POURPANAH F, ABDAR M, LUO Y X, et al. A review of generalized zero-shot learning methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4051-4070. [10] WANG W, ZHENG V W, YU H, et al. A survey of zero-shot learning: settings, methods, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2). [11] CHEN S M, HONG Z M, HOU W J, et al. TransZero++: cross attribute-guided transformer for zero-shot learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12844-12861. [12] CHEN Z, HUANG Y, CHEN J, et al. Duet: cross-modal semantic grounding for contrastive zero-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(1): 405-413. [13] CHEN S M, HONG Z M, XIE G S, et al. MSDN: mutually semantic distillation network for zero-shot learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7602-7611. [14] LIU M, LI F, ZHANG C, et al. Progressive semantic-visual mutual adaption for generalized zero-shot learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 15337-15346. [15] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-05-16]. https://arxiv.org/abs/1312.6114. [16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [17] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851. [18] NARAYAN S, GUPTA A, KHAN F S, et al. Latent embedding feedback and discriminative features for zero-shot classification[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 479-495. [19] YUE Q, CUI J B, BAI L, et al. A zero-shot learning boosting framework via concept-constrained clustering[J]. Pattern Recognition, 2024, 145: 109937. [20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22) [2024-05-19]. https://arxiv.org/abs/2010.11929. [21] HAN Z, FU Z, CHEN S, et al. Contrastive embedding for generalized zero-shot learning[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2371-2381. [22] XIAN Y Q, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5542-5551. [23] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06) [2024-05-19]. https://arxiv.org/abs/1411.1784. [24] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 214-223. [25] MISHRA A, REDDY S K, MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2269-22698. [26] YU Y, JI Z, HAN J, et al. Episode-based prototype generating network for zero-shot learning[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14035-14044. [27] SHEN Y M, QIN J, HUANG L, et al. Invertible zero-shot recognition flows[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 614-631. [28] GOWDA S N. Synthetic sample selection for generalized zero-shot learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 58-67. [29] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. [30] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5769-5779. [31] AHMED M, SERAJ R, ISLAM S M S. The k-means algorithm: a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295. [32] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 4080-4090. [33] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1597-1607. [34] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD Birds-200-2011 dataset: CNS-TR-2011-001[R]. California Institute of Technology, 2011. [35] PATTERSON G, HAYS J. SUN attribute database: discovering, annotating, and recognizing scene attributes[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2751-2758. [36] REED S, AKATA Z, LEE H, et al. Learning deep representations of fine-grained visual descriptions[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 49-58. [37] CASCANTE-BONILLA P, KARLINSKY L, SMITH J S, et al. On the transferability of visual features in generalized zero-shot learning[EB/OL]. [2024-05-19]. https://arxiv.org/abs/2211.12494. [38] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 2013 ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013. [39] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. [2024-05-19]. https://arxiv.org/abs/1412.6980. [40] CHEN S M, HONG Z M, LIU Y, et al. TransZero: attribute-guided transformer for zero-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 330-338. [41] CHENG D, WANG G R, WANG B, et al. Hybrid routing transformer for zero-shot learning[J]. Pattern Recognition, 2023, 137: 109270. [42] LIU Y, ZHOU L, BAI X, et al. Goal-oriented gaze estimation for zero-shot learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3793-3802. [43] XU B R, ZENG Z G, LIAN C, et al. Generative mixup networks for zero-shot learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(3): 4054-4065. [44] CHEN S M, WANG W J, XIA B H, et al. FREE: feature refinement for generalized zero-shot learning[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 122-131. [45] KONG X, GAO Z D, LI X F, et al. En-compactness: self-distillation embedding & contrastive generation for generalized zero-shot learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9296-9305. [46] LI X F, ZHANG Y C, BIAN S R, et al. VS-boost: boosting visual-semantic association for generalized zero-shot learning[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023: 1107-1115. [47] PAUL R, VORA S, LI B X. Instance adaptive prototypical contrastive embedding for generalized zero shot learning[EB/OL]. [2024-05-18]. https://arxiv.org/abs/2309.06987. [48] LI Q, ZHAN Z X, SHEN Y Y, et al. Co-GZSL: feature contrastive optimization for generalized zero-shot learning[J]. Neural Processing Letters, 2024, 56(2): 99. [49] RAO Z J, GUO J C, LU X C, et al. Attribute-aware representation rectification for generalized zero-shot learning[EB/OL]. [2024-05-18]. https://arxiv.org/abs/2311.14750. [50] XIANG L, ZHOU Y, DUAN H R, et al. Dual feature augmentation network for generalized zero-shot learning[EB/OL]. [2024-05-18]. https://arxiv.org/abs/2309.13833. [51] LI J J, JING M M, LU K, et al. Leveraging the invariant side of generative zero-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7394-7403. [52] KIM J, SHIM K, KIM J, et al. Vision transformer-based feature extraction for generalized zero-shot learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [53] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
| [1] | CHANG Jian, ZHANG Hui, JIN Haibo, WANG Bingbing. Multistage Learning for SBERT Word-Level Adversarial Sample Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2493-2505. |
| [2] | SHI Jiliang, ZHANG Qian, YANG Sihong, LIU Shuang, TENG Lin, BAI Wuer. Image Inpainting Guided by Image Smoothness Structure [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2149-2160. |
| [3] | HU Zhongze, QIN Hongchao, LI Zhenjun, LI Yanhui, LI Ronghua, WANG Guoren. TCGCL: Complex Network Traffic Classification Algorithm Based on Graph Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1230-1240. |
| [4] | YUAN Jiang, MA Ji, ZHOU Dengwen. Boosting Degradation Representation Learning for Blind Image Super-Resolution [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1252-1263. |
| [5] | CAO Siyuan, CHEN Songcan. Frequency Domain mixup Augmentation and logit Compensation for Self-Supervised Multi-label Imbalanced Electrocardiogram Classification [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1011-1020. |
| [6] | WEI Chuyuan, YUAN Baojie, WANG Changdong. Multi-level User Interest and Multi-intent Fusion for Next Basket Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 749-763. |
| [7] | YUAN Lining, FENG Wengang, LIU Zhao. Node Classification Based on Kolmogorov-Arnold Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 645-656. |
| [8] | WANG Yonggui, YU Qi. Graph Isomorphism and Hybrid-Order Residual Gated Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 502-512. |
| [9] | XU Zhihong, ZHANG Huibin, DONG Yongfeng, WANG Liqin, WANG Xu. Question Feature Enhanced Knowledge Tracing Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2466-2475. |
| [10] | ZHU Weiwei, ZHANG Yijia, LIU Guantong, LU Mingyu, LIN Hongfei. Psychological Analysis of College Students?? Anxiety Based on Domain Comparison Adaptive Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1900-1910. |
| [11] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
| [12] | WU Xiang, GAO Yujin, LI Ronghua, WANG Guoren. Temporal Link Prediction with Community-Level Information [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2668-2677. |
| [13] | HAN Xu, WU Feng. Offline Meta-Reinforcement Learning with Contrastive Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1917-1927. |
| [14] | ZHANG Zhiyuan, CHEN Yarui, YANG Jianning, DING Wenqiang, YANG Jucheng. Variational Deep Generative Clustering Model Under Entropy Regularizations [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 376-384. |
| [15] | WANG Min, ZHAO Peng, GUO Xinping, MIN Fan. Fine-Grained Visual Categorization: Deep Pairwise Feature Comparison Interaction Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2663-2675. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/