[1] YANG X H, WANG Y Q, LIU Y, et al. Mixed graph contrastive network for semi-supervised node classification[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(7): 162.
[2] XU M J. Understanding graph embedding methods and their applications[J]. SIAM Review, 2021, 63(4): 825-853.
[3] DU G D, ZHANG J, ZHANG N, et al. Semi-supervised imbalanced multi-label classification with label propagation[J]. Pattern Recognition, 2024, 150: 110358.
[4] KHEMANI B, PATIL S, KOTECHA K, et al. A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions[J]. Journal of Big Data, 2024, 11(1): 18.
[5] WU Z H, LIN X C, LIN Z H, et al. Interpretable graph convolutional network for multi-view semi-supervised learning[J]. IEEE Transactions on Multimedia, 2023, 25: 8593-8606.
[6] CHEN F H, LI S L, HAN J L, et al. Review of lightweight deep convolutional neural networks[J]. Archives of Computational Methods in Engineering, 2024, 31(4): 1915-1937.
[7] LIANG Q, WANG W, BAO F, et al. L2GC: lorentzian linear graph convolutional networks for node classification[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, 2024: 9988-9998.
[8] HUANG A P, LU J L, WU Z H, et al. Geometric localized graph convolutional network for multi-view semi-supervised classification[J]. Information Sciences, 2024, 677: 120769.
[9] CHEN D, O’BRAY L, BORGWARDT K. Structure-aware transformer for graph representation learning[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 3469-3489.
[10] 文竹, 袁立宁, 黄伟, 等. 基于图多层感知机的节点分类算法[J]. 广西科学, 2023, 30(5): 942-950.
WEN Z, YUAN L N, HUANG W, et al. Node classification based on graph multi-layer perceptron[J]. Guangxi Sciences, 2023, 30(5): 942-950.
[11] LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[EB/OL]. [2024-06-23]. https://arxiv.org/abs/2404.19756.
[12] 谢逢洁, 杨盼盼, 崔文田. 复杂网络理论中的高阶网络研究综述[J]. 系统科学学报, 2024, 32(1): 121-127.
XIE F J, YANG P P, CUI W T. Review of higher-order network research in complex network theory[J]. Journal of Systems Science, 2024, 32(1): 121-127.
[13] 高阳, 张宏莉. 基于随机游走的社区发现方法综述[J]. 通信学报, 2023, 44(6): 198-210.
GAO Y, ZHANG H L. Survey on community detection method based on random walk[J]. Journal on Communications, 2023, 44(6): 198-210.
[14] GUI C. Link prediction based on spectral analysis[J]. PLoS One, 2024, 19(1): e0287385.
[15] 刘俊奇, 涂文轩, 祝恩. 图卷积神经网络综述[J]. 计算机工程与科学, 2023, 45(8): 1472-1481.
LIU J Q, TU W X, ZHU E. Survey on graph convolutional neural network[J]. Computer Engineering & Science, 2023, 45(8): 1472-1481.
[16] WU F, SOUZA A, ZHANG T, et al. Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6861-6871.
[17] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-06-23]. https://arxiv.org/abs/1710.10903.
[18] SOYDANER D. Attention mechanism in neural networks: where it comes and where it goes[J]. Neural Computing and Applications, 2022, 34(16): 13371-13385.
[19] BRODY S, ALON U, YAHAV E. How attentive are graph attention networks?[C]//Proceedings of the 2022 International Conference on Learning Representations, 2022: 1-26.
[20] KIM D, OH A. How to find your friendly neighborhood: graph attention design with self-supervision[EB/OL]. [2024- 06-23]. https://arxiv.org/abs/2204.04879.
[21] SHEHZAD A, XIA F, ABID S, et al. Graph transformers: a survey[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2407.09777.
[22] AGHAEI A A. rKAN: rational Kolmogorov-Arnold networks[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2406.14495.
[23] ABUEIDDA D W, PANTIDIS P, MOBASHER M E. DeepOKAN: deep operator network based on Kolmogorov Arnold networks for mechanics problems[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2405.19143.
[24] DROKIN I. Kolmogorov-Arnold convolutions: design principles and empirical studies[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2407.01092.
[25] WANG Y Z, SUN J, BAI J S, et al. Kolmogorov Arnold informed neural network: a physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov Arnold networks[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2406.11045.
[26] KIAMARI M, KIAMARI M, KRISHNAMACHARI B. GKAN: graph Kolmogorov-Arnold networks[EB/OL]. [2024- 08-13]. https://arxiv.org/abs/2406.06470.
[27] ZHANG F, ZHANG X. GraphKAN: enhancing feature extraction with graph Kolmogorov Arnold networks[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2406.13597.
[28] XU J F, CHEN Z Y, LI J Z, et al. FourierKAN-GCF: Fourier Kolmogorov-Arnold network: an effective and efficient feature transformation for graph collaborative filtering[EB/OL]. [2024-08-13]. https://arxiv.org/abs/2406.01034.
[29] YUAN L N, JIANG P, HOU W L, et al. G-MLP: graph multi-layer perceptron for node classification using contrastive learning[J]. IEEE Access, 2024, 12: 104909-104919.
[30] 袁立宁, 蒋萍, 莫嘉颖, 等. 基于二阶图卷积自编码器的图表示学习[J]. 计算机工程与应用, 2024, 60(10): 180-187.
YUAN L N, JIANG P, MO J Y, et al. Graph representation learning using second-order graph convolutional autoencoders[J]. Computer Engineering and Applications, 2024, 60(10): 180-187.
[31] 陈琪, 郭涛, 邹俊颖. 基于双重视图耦合的自监督图表示学习模型[J]. 计算机工程与设计, 2023, 44(12): 3738-3744.
CHEN Q, GUO T, ZOU J Y. Self-supervised graph representation learning model with dual view coupling[J]. Computer Engineering and Design, 2023, 44(12): 3738-3744.
[32] WANG X, ZHU M Q, BO D Y, et al. AM-GCN: adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1243-1253.
[33] YUAN L N, JIANG P, WEN Z, et al. Improving variational graph autoencoders with multi-order graph convolutions[J]. IEEE Access, 2024, 12: 46919-46929.
[34] LI P Z, PEI Y, LI J Q. A comprehensive survey on design and application of autoencoder in deep learning[J]. Applied Soft Computing, 2023, 138: 110176.
[35] HU Y, YOU H X, WANG Z C, et al. Graph-MLP: node classification without message passing in graph[EB/OL]. [2024-06-23]. https://arxiv.org/abs/2106.04051.
[36] ZHANG X, XU Y H, HE W, et al. A comprehensive review of the oversmoothing in graph neural networks[C]//Proceedings of the 18th CCF Conference on Computer Supported Cooperative Work and Social Computing. Singapore: Springer, 2023: 451-465. |