Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (3): 749-763.DOI: 10.3778/j.issn.1673-9418.2404003
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
WEI Chuyuan, YUAN Baojie, WANG Changdong
Online:
2025-03-01
Published:
2025-02-28
魏楚元,袁保杰,王昌栋
WEI Chuyuan, YUAN Baojie, WANG Changdong. Multi-level User Interest and Multi-intent Fusion for Next Basket Recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 749-763.
魏楚元, 袁保杰, 王昌栋. 多层级用户兴趣与多意图融合的下一篮推荐算法[J]. 计算机科学与探索, 2025, 19(3): 749-763.
[1] 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40. WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40. [2] RICCI F, ROKACH L, SHAPIRA B. Recommender systems: techniques, applications, and challenges[M]//Recommender systems handbook. New York: Springer US, 2021: 1-35. [3] 蒋滨泽, 邓欣, 杜雨露, 等. 基于物品关联协同过滤的下一购物篮推荐算法[J]. 计算机科学, 2023, 50(S2): 474-479. JIANG B Z, DENG X, DU Y L, et al. Next-basket recommendation algorithm based on correlation between items collaborative filtering[J]. Computer Science, 2023, 50(S2):474-479. [4] 周洋涛, 褚华, 杨文勇, 等. 基于时间感知与协同挖掘的下一购物篮推荐方法[J]. 武汉大学学报(理学版), 2021, 67(6): 525-531. ZHOU Y T, CHU H, YANG W Y, et al. Next-basket recommendation based on time perception and collaborative mining[J]. Journal of Wuhan University (Natural Science Edition), 2021, 67(6): 525-531. [5] 余文婷, 吴云. 时间感知的双塔型自注意力序列推荐模型[J]. 计算机科学与探索, 2024, 18(1): 175-188. YU W T, WU Y. Time-aware sequential recommendation model based on dual-tower self-attention[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 175-188. [6] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. [7] 吴文政, 卢先领. 融合物品转换关系和时序信息的会话推荐算法[J]. 计算机科学与探索, 2024, 18(3): 768-779. WU W Z, LU X L. Session recommendation algorithm combining item transition relations and time-order information[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 768-779. [8] WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and the 31st Innovative Applications of Artificial Intelligence Conference and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2019: 346-353. [9] WANG S J, HU L, WANG Y, et al. Intention nets: psychology-inspired user choice behavior modeling for next-basket prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6259-6266. [10] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L, et al. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. [11] BALTRUNAS L, LUDWIG B, RICCI F, et al. Matrix factorization techniques for context aware recommendation[C]//Proceedings of the 5th ACM Conference on Recommender Systems. New York: ACM, 2011: 301-304. [12] LENG Y F, YU L, XIONG J, et al. Recurrent convolution basket map for diversity next-basket recommendation[M]//Database systems for advanced applications. Cham: Springer, 2020: 638-653. [13] CHEN Y J, LI J, LIU C H, et al. Modeling dynamic attributes for next basket recommendation[EB/OL]. [2024-02-13]. https://arxiv.org/abs/2109.11654. [14] LE D T, LAUW H W, FANG Y, et al. Correlation-sensitive next-basket recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 2808-2814. [15] YU L, SUN L L, DU B W, et al. Predicting temporal sets with deep neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1083-1091. [16] WEI J, HE J H, CHEN K, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems with Applications, 2017, 69: 29-39. [17] YU F, LIU Q, WU S, et al. A dynamic recurrent model for next basket recommendation[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 729-732. [18] HU H J, HE X N. Sets2Sets: learning from sequential sets with neural networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1491-1499. [19] ARIANNEZHAD M, JULLIEN S, LI M, et al. ReCANet: a repeat consumption-aware neural network for next basket recommendation in grocery shopping[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1240-1250. [20] YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. [21] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems. Piscataway: IEEE, 2017: 1597-1600. [22] BAI T, NIE J Y, ZHAO W X, et al. An attribute-aware neural attentive model for next basket recommendation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 1201-1204. [23] CHE B B, ZHAO P P, FANG J H, et al. Inter-basket and intra- basket adaptive attention network for next basket recommendation[J]. IEEE Access, 2019, 7: 80644-80650. [24] SONG T S, GUO F, JIANG H R, et al. HGAT-BR: hyperedge-based graph attention network for basket recommendation[J]. Applied Intelligence, 2023, 53(2): 1435-1451. [25] YUAN W H, WANG H, YU X M, et al. Attention-based context-aware sequential recommendation model[J]. Information Sciences, 2020, 510: 122-134. [26] ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. [27] ZHANG Y, GUO B, WANG Q R, et al. MGCN4REC: multi-graph convolutional network for next basket recommendation with instant interest[M]//Green, pervasive, and cloud computing. Cham: Springer, 2020: 171-185. [28] SU T T, WANG C D, XI W D, et al. Hierarchical alignment with polar contrastive learning for next-basket recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(1): 199-210. [29] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. [30] FAN Z W, LIU Z W, ZHANG J W, et al. Continuous-time sequential recommendation with temporal graph collaborative transformer[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 433-442. [31] HE X N, DENG K, WANG X, et al. LightGCN[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. [32] YU Y L, YANG E N, GUO G B, et al. Basket representation learning by hypergraph convolution on repeated items for next-basket recommendation[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023: 2415-2422. [33] LI R, ZHANG L, LIU G N, et al. Next basket recommendation with intent-aware hypergraph adversarial network[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1303-1312. [34] GAO R, TAO Y H, YU Y H, et al. Self-supervised dual hypergraph learning with intent disentanglement for session-based recommendation[J]. Knowledge-Based Systems, 2023, 270: 110528. [35] HU H J, HE X N, GAO J Y, et al. Modeling personalized item frequency information for next-basket recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1071-1080. [36] WAN S, LAN Y, WANG P, et al. Next basket recommendation with neural networks[C]//Poster Proceedings of the 9th ACM Conference on Recommender Systems. New York: ACM, 2015: 268-273. [37] QIN Y Q, WANG P F, LI C L, et al. The world is binary: contrastive learning for denoising next basket recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 859-868. [38] ROMANOV A, LASHININ O, ANANYEVA M, et al. Time-aware item weighting for the next basket recommendations[C]//Proceedings of the 17th ACM Conference on Recommender Systems. New York: ACM, 2023: 985-992. [39] CHOU Y H, CHENG P J, CHOU Y H, et al. Incorporating co-purchase correlation for next-basket recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 3823-3827. [40] LIU T, YIN X R, NI W J. Next basket recommendation model based on attribute-aware multi-level attention[J]. IEEE Access, 2020, 8: 153872-153880. [41] WANG X, HE X N, CAO Y X, et al. KGAT[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. [42] 潘春雨, 赵朋朋. 基于图注意力网络的下一个购物篮推荐[J]. 计算机应用与软件, 2023, 40(8): 17-23. PAN C Y, ZHAO P P. Graph attention network for next-basket recommendation[J]. Computer Applications and Software, 2023, 40(8): 17-23. [43] LIU T, LIU B J. Next basket recommendation based on graph attention network and transformer[J]. Journal of Physics: Conference Series, 2022(1): 012023. [44] WASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [45] HE X R, WEI T X, HE J R, et al. Robust basket recommendation via noise-tolerated graph contrastive learning[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 709-719. [46] MA J, CUI P, KUANG K, et al. Disentangled graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning. New York: ACM, 2019: 4212-4221. [47] CHEN H, DENG Y J, LI Y F, et al. RGBD salient object detection via disentangled cross-modal fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 8407-8416. [48] JOHN V, MOU L L, BAHULEYAN H, et al. Disentangled representation learning for non-parallel text style transfer[EB/OL]. [2024-02-13]. https://arxiv.org/abs/1808.04339. [49] MA J, ZHOU C, CUI P, et al. Learning disentangled representations for recommendation[C]//Advances in Neural Information Processing Systems 32, 2019: 5711-5722. [50] HIGGINS I, MATTHEY L, PAL A, et al. Beta-VAE: learning basic visual concepts with a constrained variational framework[C]//Proceedings of the 5th International Conference on Learning Representations, 2017: 427-441. [51] WANG X, JIN H Y, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1001-1010. [52] WU J H, FAN W Q, CHEN J F, et al. Disentangled contrastive learning for social recommendation[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 4570-4574. [53] WANG Y F, TANG S Y, LEI Y T, et al. DisenHAN: disentangled heterogeneous graph attention network for recommendation[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1605-1614. [54] 徐雪东, 刘晓东. 基于时间加权ALS模型协同过滤推荐算法[J]. 电子设计工程, 2022, 30(14): 39-43. XU X D, LIU X D. Collaborative filtering recommendation algorithm based on time weighted ALS model[J]. Electronic Design Engineering, 2022, 30(14): 39-43. [55] 殷佳莉, 江智威, 杨毅, 等. 融合时间衰减函数的改进协同过滤算法[J]. 计算机技术与发展, 2022, 32(4): 170-174. YIN J L, JIANG Z W, YANG Y, et al. An improved collaborative filtering algorithm incorporating time decay function[J]. Computer Technology and Development, 2022, 32(4): 170-174. [56] WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for NextBasket recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412. [57] SU T T, HE Z Y, CHEN M S, et al. Basket booster for prototype-based contrastive learning in next basket recommendation[M]//Machine learning and knowledge discovery in databases. Cham: Springer, 2023: 574-589. [58] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2024-02-13]. https://arxiv.org/abs/1511.06939. [59] LIU Z W, LI X H, FAN Z W, et al. Basket recommendation with multi-intent translation graph neural network[C]//Proceedings of the 2020 IEEE International Conference on Big Data. Piscataway: IEEE, 2020: 728-737. [60] DENG Z Y, LI J J, GUO Z Q, et al. Multi-aspect interest neighbor-augmented network for next-basket recommendation[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
[1] | CAO Siyuan, CHEN Songcan. Frequency Domain mixup Augmentation and logit Compensation for Self-Supervised Multi-label Imbalanced Electrocardiogram Classification [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1011-1020. |
[2] | YUAN Lining, FENG Wengang, LIU Zhao. Node Classification Based on Kolmogorov-Arnold Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 645-656. |
[3] | WANG Yonggui, YU Qi. Graph Isomorphism and Hybrid-Order Residual Gated Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 502-512. |
[4] | LI Mengyun, ZHANG Jing, ZHANG Huanxiang, ZHANG Xiaolin, LIU Luyao. Multimodal Sentiment Analysis Based on Cross-Modal Semantic Information Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2476-2486. |
[5] | XU Zhihong, ZHANG Huibin, DONG Yongfeng, WANG Liqin, WANG Xu. Question Feature Enhanced Knowledge Tracing Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2466-2475. |
[6] | ZHU Weiwei, ZHANG Yijia, LIU Guantong, LU Mingyu, LIN Hongfei. Psychological Analysis of College Students?? Anxiety Based on Domain Comparison Adaptive Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1900-1910. |
[7] | WANG Yonggui, LIU Danni. Cross-Domain Recommendation Algorithm Combining Multi-personalized Bridges and Self-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805. |
[8] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
[9] | WU Xiang, GAO Yujin, LI Ronghua, WANG Guoren. Temporal Link Prediction with Community-Level Information [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2668-2677. |
[10] | HAN Xu, WU Feng. Offline Meta-Reinforcement Learning with Contrastive Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1917-1927. |
[11] | WANG Min, ZHAO Peng, GUO Xinping, MIN Fan. Fine-Grained Visual Categorization: Deep Pairwise Feature Comparison Interaction Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2663-2675. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/