Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (4): 1011-1020.DOI: 10.3778/j.issn.1673-9418.2405065
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
CAO Siyuan, CHEN Songcan
Online:
2025-04-01
Published:
2025-03-28
操思源,陈松灿
CAO Siyuan, CHEN Songcan. Frequency Domain mixup Augmentation and logit Compensation for Self-Supervised Multi-label Imbalanced Electrocardiogram Classification[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1011-1020.
操思源, 陈松灿. 频域mixup增广和logit补偿的自监督多标记不平衡心电图分类[J]. 计算机科学与探索, 2025, 19(4): 1011-1020.
[1] REHMAN S, REHMAN E, IKRAM M, et al. Cardiovascular disease (CVD): assessment, prediction and policy implications[J]. BMC Public Health, 2021, 21(1): 1299. [2] MELZI P, TOLOSANA R, CECCONI A, et al. Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization[J]. Scientific Reports, 2021, 11(1): 22786. [3] YAN G S, LIANG S, ZHANG Y C, et al. Fusing transformer model with temporal features for ECG heartbeat classification[C]//Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway:IEEE, 2019: 898-905. [4] 李兴秀, 唐建军, 华晶. 结合CNN与双向LSTM的心律失常分类[J]. 计算机科学与探索, 2021, 15(12): 2353-2361. LI X X, TANG J J, HUA J. Arrhythmia classification based on CNN and bidirectional LSTM[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2353-2361. [5] LI F, LI H X, LI Y, et al. Decoupling representation learning for imbalanced electroencephalography classification in rapid serial visual presentation task[J]. Journal of Neural Engineer-ing, 2022, 19(3): 036011. [6] KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[EB/OL]. [2024-02-18]. https://arxiv.org/abs/1910.09217. [7] YANG Y Z, XU Z. Rethinking the value of labels for improving class-imbalanced learning[EB/OL]. [2024-02-18]. https:// arxiv.org/abs/2006.07529. [8] ZHANG C, LIU H, LI J, et al. Contrastive graph few-shot learning[EB/OL]. [2024-02-18]. https://arxiv.org/abs/2210.00084. [9] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9. [10] CHEN T, KORNBLITH S, NOROUZI M, et al. A?simple framework?for?contrastive?learning?of?visual?representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020:?1597-1607. [11] MEHARI T, STRODTHOFF N. Self-supervised representation learning from 12-lead ECG data[J]. Computers in Biology and Medicine, 2022, 141: 105114. [12] KIYASSEH D, ZHU T, CLIFTON D. CLOCS: contrastive learning of cardiac signals[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 5606-5615. [13] WANG Y H, HAN Y, WANG H S, et al. Contrast everything: a hierarchical contrastive framework for medical time-series[EB/OL]. [2024-03-14]. https://arxiv.org/abs/2310.14017. [14] 韩涵, 黄训华, 常慧慧, 等. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. HAN H, HUANG X H, CHANG H H, et al. Review of self-supervised learning methods in field of ECG[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. [15] LIU Z Y, ALAVI A, LI M Y, et al. Self-supervised contrastive learning for medical time series: a systematic review[J]. Sensors, 2023, 23(9): 4221. [16] ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237. [17] PENG F R, LUO J C, LU X, et al. Cross-domain contrastive learning for time series clustering[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence and the 36th Conference on Innovative Applications of Artificial Intelligence and the 14th Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2024: 8921-8929. [18] GUO H, WANG S. Long-tailed multi-label visual recognition by collaborative training on uniform and re-balanced samplings[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15089-15098. [19] PHAN T, LE D, BRIJESH P, et al. Multimodality multi-lead ECG arrhythmia classification using self-supervised learning[C]//Proceedings of the 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics. Piscataway: IEEE, 2022: 1-4. [20] P?PPELBAUM J, CHADHA G S, SCHWUNG A. Contrastive learning based self-supervised time-series analysis[J]. Applied Soft Computing, 2022, 117: 108397. [21] SOLTANIEH S, ETEMAD A, HASHEMI J. Analysis of augmentations for contrastive ECG representation learning[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-10. [22] CHARTE F, RIVERA A J, DEL JESUS M J, et al. MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation[J]. Knowledge-Based Systems, 2015, 89: 385-397. [23] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [24] CHARTE F, RIVERA A, DEL JESUS M J, et al. A first approach to deal with imbalance in multi-label datasets[M]//Hybrid artificial intelligent systems. Berlin, Heidelberg: Springer, 2013: 150-160. [25] CHEN K, LU B L, KWOK J T. Efficient classification of multi-label and imbalanced data using min-max modular classifiers[C]//Proceedings of the 2006 IEEE International Joint Conference on Neural Network. Piscataway: IEEE, 2006: 1770-1775. [26] TAHIR M A, KITTLER J, BOURIDANE A. Multilabel classification using heterogeneous ensemble of multi-label classifiers[J]. Pattern Recognition Letters, 2012, 33(5): 513-523. [27] LIU Y, LI Q C, WANG K Q, et al. Automatic multi-label ECG classification with category imbalance and cost-sensitive thre-sholding[J]. Biosensors, 2021, 11(11): 453. [28] LIU J X, CHEN S C. TimesURL: self-supervised contrastive learning for universal time series representation learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(12): 13918-13926. [29] CHENG J Y, GOH H, DOGRUSOZ K, et al. Subject-aware contrastive learning for biosignals[EB/OL]. [2024-03-14]. https://arxiv.org/abs/2007.04871. [30] CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]//Advances in Neural Information Processing Systems 32, 2019: 1567-1578. [31] MENON A, JAYASUMANA S, RAWAT A, et al. Long-tail learning via logit adjustment[EB/OL]. [2024-03-14]. https://arxiv.org/abs/2007.07314. [32] TAN J, WANG C, LI B, et al. Equalization loss for long-tailed object recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11662-11671. [33] XIE Y T, QIN L, TAN H C, et al. Automatic 12-leading electro-cardiogram classification network with deformable convolu-tion[C]//Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2021: 882-885. [34] REYNA M A, ALDAY E A P, GU A N, et al. Classification of 12-lead ECGs: the PhysioNet/computing in cardiology challenge 2020[C]//Proceedings of the 2020 Computing in Cardiology. Piscataway: IEEE, 2020: 1-4. [35] STRODTHOFF N, WAGNER P, SCHAEFFTER T, et al. Deep learning for ECG analysis: benchmarks and insights from PTB-XL[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1519-1528. [36] SCHAPIRE R E, SINGER Y. BoosTexter: a boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2): 135-168. [37] BAI S J, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2024-03-14]. https://arxiv.org/abs/1803.01271. [38] PASZKE A, GROSS S, MASSA F, et al. An imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems 32, 2019: 8024-8035. [39] MAHARANA K, MONDAL S, NEMADE B. A review: data pre-processing and data augmentation techniques[J]. Global Transitions Proceedings, 2022, 3(1): 91-99. [40] GARCEA F, SERRA A, LAMBERTI F, et al. Data augmentation for medical imaging: a systematic literature review[J]. Computers in Biology and Medicine, 2023, 152: 106391. [41] ZHANG W R, GENG S J, HONG S D. A simple self-supervised ECG representation learning method via manipulated temporal-spatial reverse detection[J]. Biomedical Signal Pro-cessing and Control, 2023, 79: 104194. [42] SARKAR P, LOBMAIER S, FABRE B, et al. Detection of maternal and fetal stress from the electrocardiogram with self-supervised representation learning[J]. Scientific Reports, 2021, 11(1): 24146. [43] SARKAR P, ETEMAD A. Self-supervised ECG representation learning for emotion recognition[J]. IEEE Transactions on Affective Computing, 2020, 13(3): 1541-1554. |
[1] | SUN Hongjian, XU Pengyu, LIU Bing, JING Liping, YU Jian. Multi-label Classification Based on Label-Aware Variational Autoencoder [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 714-723. |
[2] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[3] | PENG Yanfei, ZHANG Ruisi, WANG Ruihua, GUO Jialong. Potential Relationship Based Joint Entity and Relation Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1047-1056. |
[4] | WANG Tianhao, ZHANG Pei, ZHANG Zhao, CHEN Xihai, WANG Jing, ZHANG Baili. Multi-label Classification Based on Resampling and Ensemble Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 892-901. |
[5] | LIAO Guoqiong, YANG Lechuan, WAN Changxuan, LIU Dexi, LIU Xiping. Attention-aware Next Event Recommendation Strategy for Groups [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 499-510. |
[6] | LIU Chengguang, WANG Shanmin, LIU Qingshan. Class-Balanced Modulation for Facial Expression Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 3029-3038. |
[7] | LI Dongmei, YANG Yu, MENG Xianghao, ZHANG Xiaoping, SONG Chao, ZHAO Yufeng. Review on Multi-lable Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2529-2542. |
[8] | XIE Zipeng, BAO Chongming, ZHOU Lihua, WANG Chongyun, KONG Bing. EM Clustering Oversampling Algorithm for Class Imbalanced Data [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 228-237. |
[9] | LI Xingxiu, TANG Jianjun, HUA Jing. Arrhythmia Classification Based on CNN and Bidirectional LSTM [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2353-2361. |
[10] | YANG Haitao, DENG Zhaohong, WANG Shitong. Recognition of RNA-Binding Protein by Fusion of Multi-view and Multi-label Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2193-2205. |
[11] | XU Jian, WANG Xinyue, CAI Zixin, SHEN Qihang, JING Liping. Imbalance Classification Based on Informative Instances Selection [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 401-409. |
[12] | CHENG Yusheng, LI Zhiwei, PANG Shufang. Multi-Label Feature Extraction Method Relied on Feature-Label Dependence Auto-encoder [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 470-481. |
[13] | DONG Minggang, LIU Ming, JING Chao. Sampling Safety Coefficient for Multi-class Imbalance Oversampling Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1776-1786. |
[14] | JI Zhong, LI Huihui, HE Yuqing. Zero-Shot Multi-Label Image Classification Based on Deep Instance Differentiation [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(1): 97-105. |
[15] | PAN Zhuqiang, ZHANG Lin, ZHANG Lei, LI Guozheng, YAN Shixing. Research on Multi-Label Classification Method of Traditional Chinese Medicine Clinical Disease Data [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(8): 1295-1304. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/