
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (5): 1252-1263.DOI: 10.3778/j.issn.1673-9418.2403065
• Graphics·Image • Previous Articles Next Articles
YUAN Jiang, MA Ji, ZHOU Dengwen
Online:2025-05-01
Published:2025-04-28
袁 江,马 冀,周登文
YUAN Jiang, MA Ji, ZHOU Dengwen. Boosting Degradation Representation Learning for Blind Image Super-Resolution[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1252-1263.
袁 江, 马 冀, 周登文. 增强退化表征学习的盲图像超分辨率[J]. 计算机科学与探索, 2025, 19(5): 1252-1263.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2403065
| [1] DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 184-199. [2] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. [3] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [4] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1132-1140. [5] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 294-310. [6] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 1833-1844. [7] ZHOU X, HUANG H, HE R, et al. MSRA-SR: image super- resolution transformer with multi-scale shared representation acquisition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12665-12676. [8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [9] GU J J, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1604-1613. [10] ZHANG K, ZUO W M, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3262-3271. [11] XU Y S, TSENG S R, TSENG Y, et al. Unified dynamic convolutional network for super-resolution with variational degradations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12496-12505. [12] LEE R, LI R, VENIERIS S, et al. Meta-learned kernel for blind super-resolution kernel estimation[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 1485-1494. [13] LUO Z X, HUANG Y, LI S, et al. Unfolding the alternating optimization for blind super resolution[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 5632-5643. [14] WANG L G, WANG Y Q, DONG X Y, et al. Unsupervised degradation representation learning for blind super-resolution[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021: 10581-10590. [15] ZHANG Y F, DONG L, YANG H, et al. Weakly-supervised contrastive learning-based implicit degradation modeling for blind image super-resolution[J]. Knowledge-Based Systems, 2022, 249: 108984. [16] WANG Y, MING J W, JIA X, et al. Blind image super-resolution with degradation-aware adaptation[C]//Proceedings of the 2022 Asian Conference on Computer Vision. Cham: Springer, 2022: 69-85. [17] ZHANG Y, LIU Z Y, LIU S D, et al. Frequency aggregation network for blind super-resolution based on degradation representation[J]. Digital Signal Processing, 2023, 133: 103837. [18] YANG Y Y, LIU Z H, OU W H, et al. Blind super-resolution model based on unsupervised degenerate indication learning[J]. Computers and Electrical Engineering, 2023, 111: 108958. [19] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605. [20] CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL]. [2024-01-15]. https://arxiv.org/abs/2003.04297. [21] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent a new approach to self-supervised learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 21271-21284. [22] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. [23] ZHANG W L, SHI G Y, LIU Y H, et al. A closer look at blind super-resolution: degradation models, baselines, and performance upper bounds[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 526-535. [24] CI Y Z, LIN C, BAI L, et al. Fast-MoCo: boost momentum-based contrastive learning with combinatorial patches[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 290-306. [25] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1606. 08415. [26] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11966-11976. [27] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1122-1131. [28] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1122-1131. [29] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference, 2012: 1-10. [30] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces. Berlin, Heidelberg: Springer, 2012: 711-730. [31] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423. [32] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206. [33] ZHANG K, LIANG J Y, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4771-4780. [34] KIM S Y, SIM H, KIM M. KOALAnet: blind super-resolution using kernel-oriented adaptive local adjustment[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10611-10620. [35] LIANG J, ZENG H, ZHANG L. Efficient and degradation-adaptive network for real-world image super-resolution[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 574-591. |
| [1] | HU Zhongze, QIN Hongchao, LI Zhenjun, LI Yanhui, LI Ronghua, WANG Guoren. TCGCL: Complex Network Traffic Classification Algorithm Based on Graph Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1230-1240. |
| [2] | CAO Siyuan, CHEN Songcan. Frequency Domain mixup Augmentation and logit Compensation for Self-Supervised Multi-label Imbalanced Electrocardiogram Classification [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1011-1020. |
| [3] | WEI Chuyuan, YUAN Baojie, WANG Changdong. Multi-level User Interest and Multi-intent Fusion for Next Basket Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 749-763. |
| [4] | YUAN Lining, FENG Wengang, LIU Zhao. Node Classification Based on Kolmogorov-Arnold Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 645-656. |
| [5] | WANG Yonggui, YU Qi. Graph Isomorphism and Hybrid-Order Residual Gated Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 502-512. |
| [6] | XU Zhihong, ZHANG Huibin, DONG Yongfeng, WANG Liqin, WANG Xu. Question Feature Enhanced Knowledge Tracing Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2466-2475. |
| [7] | ZHU Weiwei, ZHANG Yijia, LIU Guantong, LU Mingyu, LIN Hongfei. Psychological Analysis of College Students?? Anxiety Based on Domain Comparison Adaptive Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1900-1910. |
| [8] | WANG Chaoxue, DAI Ning. Super-Resolution Reconstruction Algorithm of Remote Sensing Image with Two-Branch Semantic Enhanced Perception [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1271-1285. |
| [9] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
| [10] | WU Xiang, GAO Yujin, LI Ronghua, WANG Guoren. Temporal Link Prediction with Community-Level Information [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2668-2677. |
| [11] | HAN Xu, WU Feng. Offline Meta-Reinforcement Learning with Contrastive Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1917-1927. |
| [12] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
| [13] | LYU Jia, XU Pengcheng. Image Super-resolution Reconstruction Algorithm Based on Multi-scale Adaptive Upsampling [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 879-891. |
| [14] | LI Yuhang, XIE Liangbin, DONG Chao. Review of 2D Animation Restoration in Visual Domain Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2808-2826. |
| [15] | WANG Min, ZHAO Peng, GUO Xinping, MIN Fan. Fine-Grained Visual Categorization: Deep Pairwise Feature Comparison Interaction Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2663-2675. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/