Journal of Frontiers of Computer Science and Technology ›› 2008, Vol. 2 ›› Issue (1): 45-59.

• 学术研究 • Previous Articles     Next Articles

Closed similarity-based clustering on 3D gene expression data

ZHAO Yuhai, WANG Guoren+, XU Guangyu   

  1. School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-02-20 Published:2008-02-20
  • Contact: ZHAO Yuhai

基于封闭相似性的三维基因表达数据聚类算法

赵宇海,王国仁+,许光宇   

  1. 东北大学 信息科学与工程学院,沈阳 110004
  • 通讯作者: 赵宇海

Abstract: This paper introduces the idea “first test and then generation” to address the efficiency issue of clustering 3D gene expression data. Based on the proposed concept of closed similarity, TESTER, a novel efficient algorithm, is designed. Meanwhile, several effective pruning rules are devised to avoid the time-consuming global closure test. Both theoretic analysis and experimental results prove that TESTER outperforms RSM and CubeMiner, the two state-of-the-art homogeneous algorithms.

Key words: 3D gene expression data, closed similarity, clustering

摘要: 研究了三维基因表达数据聚类的效率问题,在三维基因表达数据聚类过程中引入了“先验证后生成”的思想。基于提出的封闭相似性概念,设计了一种新的高效算法TESTER,采用多个有效的削减规则避免代价很高的全局封闭性检验,提高了效率。理论分析和实验结果表明,TESTER算法的性能优于目前最好的同类算法RSM和CubeMiner。

关键词: 三维基因表达数据, 封闭相似性, 聚类