[1] Girshick R, Donahue J, Darrell T, et al. Rich feature hierar-chies for accurate object detection and semantic segmenta-tion[C]//Proceedings of the 2014 IEEE Conference on Com-puter Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[2] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[J]. arXiv:1506.02640, 2015.
[3] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multi-box detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[4] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[5] Girshick R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 1440-1448.
[6] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99.
[7] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7263-7271.
[8] Redmon J, Farhadi A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] Dai J, Li Y, He K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Pro-cessing Systems. Red Hook: Curran Associates Inc., 2016: 379-387.
[11] Wang L, Guo S, Huang W, et al. Places 205-vggnet models for scene recognition[J]. arXiv:1508.01667, 2015.
[12] Sasha T, Almeida D, Lyman K. Resnet in resnet: generaliz-ing residual architectures[J]. arXiv:1603.08029, 2016. |