[1] SZE V, CHEN Y H, EINER J, et al. Hardware for machine learning: challenges and opportunities[C]//Proceedings of the Custom Integrated Circruits Conference, Austin, Apr 30-May 3, 2017. Piscataway: IEEE, 2017: 1-8.
[2] DIEBOLD F. What??s the big idea?“Big Data”and its origins[J]. Significance, 2021, 18(1): 36-37.
[3] BAO P P, TAO C Q, HUANG Z Q. Research on data quality of open source code data[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 389-400.
包盼盼, 陶传奇, 黄志球. 面向开源源码大数据的数据质量研究[J]. 计算机科学与探索, 2020, 14(3): 389-400.
[4] YU Z, ZHOU H, JIANG L. Optimized allocation of FPGA memory for image processing[J]. Microprocessors and Micro-systems, 2021, 80(7): 103592.
[5] ALKHELAIWI M, BOULILA W, AHMAD J, et al. An efficient approach based on privacy-preserving deep learning for satellite image classification[J]. Remote Sensing, 2021, 13(11): 2221.
[6] XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
[7] RABIE A. Detecting adversarial attacks on audio-visual speech recognition using deep learning method[J]. International Journal of Speech Technology, 2021. DOI:10.3390/electronics10111350.
[8] LI G J, LIANG S, NIE S, et al. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition[J]. Neural Networks, 2021, 141: 225-237.
[9] KRUG A, EBRAHIMZADEH M, ALEMANN J, et al. Analyzing and visualizing deep neural networks for speech recognition with saliency-adjusted neuron activation profiles[J]. Electronics, 2021, 10(11): 1350.
[10] SHEN Y C, HSIA T C, HSU C H. Analysis of electronic health records based on deep learning with natural language proc-essing[J]. Arabian Journal for Science and Engineering, 2021. DOI:10.1007/s13369-021-05596-6.
[11] SHI Y, FENG D Z, CHENG Y, et al. A natural language-inspired multilabel video streaming source identification method based on deep neural networks[J]. Signal, Image and Video Processing, 2021, 15: 1161-1168.
[12] KOROTEEW M. BERT: a review of applications in natural language processing and understanding[J]. arXiv:2103.11943, 2021.
[13] YASMEEN F, SHERINE R. Optimizing MRI registration using software/hardware co-design model on FPGA[J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 10(2): 128-137.
[14] WANG T, WANG C, ZHOU X, et al. An overview of FPGA based deep learning accelerators: challenges and opportuni-ties[C]//Proceedings of 2019 IEEE 21st International Con-ference on High Performance Computing and Communica-tions, Zhangjiajie, Aug 10-12, 2019. Piscataway: IEEE, 2019: 1674-1681.
[15] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[16] KUANG H, GUO Q, LI S Q, et al. Short-term wind power forecasting model based on multi-feature extraction and CNN-LSTM[J]. IOP Conference Series: Earth and Environmental Science, 2021, 702(1): 012019.
[17] ZHANG J Y, WANG H L, GUO Y, et al. Review of deep learning[J]. Application on Research of Computers, 2018, 35(7): 1921-1928.
张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7): 1921-1928.
[18] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learn-ing[M]. Cambridge: MIT Press, 2016: 813-814.
[19] YANG P W, ZHOU Y H, XING G, et al. Applications of convolutional neural network in biomedical image[J]. Computer Engineering and Applications, 2021, 57(7): 44-58.
杨培伟, 周余红, 邢岗, 等. 卷积神经网络在生物医学图像上的应用进展[J]. 计算机工程与应用, 2021, 57(7): 44-58.
[20] CHEN C, YAN W, XIA J, et al. Design and implementation of FPGA-based deep learning object detection system[J]. Application of Electronic Technique, 2019, 45(8): 40-43.
陈辰, 严伟, 夏珺, 等. 基于FPGA的深度学习目标检测系统的设计与实现[J]. 电子技术应用, 2019, 45(8): 40-43.
[21] BOHN J, FEISCHL M. Recurrent neural networks as optimal mesh refinement strategies[J]. Computers and Mathematics with Applications, 2021, 97: 61-76.
[22] WU A C. Neural networks and deep learning[M]. Beijing: Electronic Industry Press, 2016: 348.
吴岸城. 神经网络与深度学习[M]. 北京:电子工业出版社, 2016: 348.
[23] AHMAD A, PASHA M A. Optimizing hardware accelerated general matrix-matrix multiplication for CNNs on FPGAs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2692-2696.
[24] KALA S, NALESH S. Efficient CNN accelerator on FPGA[J]. IETE Journal of Research, 2020, 66(6): 733-740.
[25] MA Y F, CAO Y, VRUDHULA S, et al. Performance mode-ling for CNN inference accelerators on FPGA[J]. IEEE Trans-actions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(4): 843-856.
[26] LI B J, QIN G X, ZHU S J, et al. Design of FPGA accelerator architecture for convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 437-448.
李炳剑, 秦国轩, 朱少杰, 等. 面向卷积神经网络的FPGA加速器架构设计[J]. 计算机科学与探索, 2020, 14(3): 437-448.
[27] ZHANG C, LI P, SUN G, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]//Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, Feb 22-24, 2015. New York: ACM, 2015: 161-170.
[28] ZHOU Y, JIANG J. An FPGA-based accelerator implementa-tion for deep convolutional neural networks[C]//Proceedings of the 2015 4th International Conference on Computer Science and Network Technology, Harbin, Dec 19-20, 2015. Piscataway: IEEE, 2015: 829-832.
[29] HUANG Z. Research and implementation of FPGA acce-leration for deep learning algorithm[D]. Chengdu: Univer-sity of Electronic Science and Technology, 2019.
黄圳. 深度学习算法的FPGA硬件加速研究与实现[D]. 成都:电子科技大学, 2019.
[30] SHEN Y, FERDMAN M, MILDER P. Maximizing CNN accelerator efficiency through resource partitioning[C]//Pro-ceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture, Toronto, Jun 24-28, 2017. Piscataway: IEEE, 2017: 535-547.
[31] SUN Y X, AMANO H. FiC-RNN: a multi-FPGA accele-ration framework for deep recurrent neural networks: special section on parallel, distributed, and reconfigurable computing, and networking[J]. IEICE Transactions on Information and Systems, 2020, 103(12): 2457-2462.
[32] GENG T, WANG T, SANAYULLAH A, et al. A framework for acceleration of CNN training on deeply-pipelined FPGA clusters with work and weight load balancing[C]//Proceed-ings of the 2018 28th International Conference on Field Programmable Logic and Applications, Dublin, Aug 27-31, 2018. Piscataway: IEEE, 2018: 394-398.
[33] ZHANG J L, LI J. Improving the performance of OpenCL-based FPGA accelerator for convolutional neural network[C]//Proceedings of the 2017 ACM/SIGDA International Symposium, Monterey, Feb 22-24, 2017. New York: ACM, 2017: 25-34.
[34] NURVITADHI E, SHEFFIELD D, SIM J, et al. Accelera-ting binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC[C]//Proceedings of the 2016 International Conference on Field-Programmable Technology, Xi??an, Dec 7-9, 2016. Piscataway: IEEE, 2016: 77-84.
[35] RYBALKIN V, PAPPALARDO A, GHAFFAR M, et al. FINN-L: library extensions and design trade-off analysis for variable precision LSTM networks on FPGAs[C]//Procee-dings of the 2018 28th International Conference on Field Programmable Logic and Applications, Dublin, Aug 27-31, 2018. Piscataway: IEEE, 2018: 89-96.
[36] QIU J T, WANG J, YAO S, et al. Going deeper with emb-edded FPGA platform for convolutional neural network[C]//Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, Feb 21-23, 2016. New York: ACM, 2016: 26-35.
[37] GUAN Y J, ZHI H Y, SUN G Y, et al. FPGA-based accelerator for long short-term memory recurrent neural networks[C]//Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference, Chiba, Jan 16-19, 2017. Piscataway: IEEE, 2017: 629-634.
[38] HAN S, KANG J L, MAO H Z, et al. ESE: efficient speech recognition engine with sparse LSTM on FPGA[C]//Proc-eedings of the 2017 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, Feb 22-24, 2017. New York: ACM, 2017: 75-84.
[39] NURVITADHI E, SIM J, SHEFFIELD D, et al. Accelera-ting recurrent neural networks in analytics servers: comparison of FPGA, CPU, GPU, and ASIC[C]//Proceedings of the 26th International Conference on Field Programmable Logic and Applications, Lausanne, Aug 29-Sep 2, 2016. Piscataway: IEEE, 2016: 1-4.
[40] QU W. Optimizing and accelerating application of deep learning in image recognition based on FPGA[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
屈伟. 基于FPGA的深度学习在图像识别上的优化与加速应用[D]. 成都:电子科技大学, 2019.
[41] KHAN H, KHAN A, KHAN Z, et al. NPE: an FPGA-based overlay processor for natural language processing[J]. arXiv:2104.06535, 2021.
[42] MOTAMEDI M, GYSEL P, AKELLA V, et al. Design space exploration of FPGA-based deep convolutional neural net-works[C]//Proceedings of the 21st Asia and South Pacific Design Automation Conference, Macao, China, Jan 25-28, 2016. Piscataway: IEEE, 2016: 575-580.
[43] WU J F, ZHENG B W, NIE Y, et al. FPGA accelerator of 3DES algorithm based on OpenCL[J/OL]. Computer Engineering (2020-12-11)[2021-06-13]. https://doi.org/10.19678/j.issn.1000-3428.0059799.
吴健凤, 郑博文, 聂一, 等. 基于OpenCL的3DES算法FPGA加速器[J/OL]. 计算机工程(2020-12-11)[2021-06-13]. https://doi.org/10.19678/j.issn.1000-3428.0059799.
[44] LIAN R L. A framework for FPGA-based acceleration of neural network inference with limited numerical precision via high-level synthesis with streaming functionality[D]. Toronto: University of Toronto, 2016.
[45] ALWANI M, CHEN H, FERDMAN M, et al. Fused-layer CNN accelerators[C]//Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture, Taipei, China, Oct 15-19, 2016. Piscataway: IEEE, 2016: 12-21.
[46] GUAN Y J, LIANG H, XU N Y, et al. FP-DNN: an auto-mated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates[C]//Proceedings of the 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines, Napa, Apr 30-May 2, 2017. Piscataway: IEEE, 2017: 152-159. |