计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (11): 2557-2579.DOI: 10.3778/j.issn.1673-9418.2303099
李杰, 瞿中
出版日期:
2023-11-01
发布日期:
2023-11-01
LI Jie, QU Zhong
Online:
2023-11-01
Published:
2023-11-01
摘要: 手指静脉识别技术由于其非接触、高防伪性以及活体检测等优点,成为新一代生物识别技术中的研究热点。随着深度学习的发展,基于深度神经网络的手指静脉识别技术取得了显著的成果。首先对手指静脉识别领域的常用公开数据集进行了介绍,然后根据神经网络学习任务的不同,对近几年深度学习方法在手指静脉识别中的应用进行了分类,分析了每种类型的技术特点和适用场景。从轻量化网络、数据增广、注意力机制等方面对手指静脉识别中的深度学习设计技巧进行了介绍。从分类损失和度量学习损失两方面,对模型中常用的损失函数进行了阐述。最后介绍了手指静脉识别系统的评价指标并汇总了部分研究在准确率和等错误率方面的成果。此外,还提出了手指静脉识别面临的挑战和潜在的发展方向。
李杰, 瞿中. 深度学习在手指静脉识别中的应用研究综述[J]. 计算机科学与探索, 2023, 17(11): 2557-2579.
LI Jie, QU Zhong. Survey of Application of Deep Learning in Finger Vein Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2557-2579.
[1] SHAHEED K, LIU H, YANG G P, et al. A systematic review of finger vein recognition techniques[J]. Information, 2018, 9(9): 213. [2] HSIA C H, LIU C H. New hierarchical finger-vein feature extraction method for iVehicles[J]. IEEE Sensors Journal, 2022, 22(13): 13612-13621. [3] ZHAO P Y, ZHAO S P, CHEN L Y, et al. Exploiting multi-perspective driven hierarchical content-aware network for finger vein verification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7938-7950. [4] YANG W, WANG S, HU J, et al. A fingerprint and finger-vein based cancelable multi-biometric system[J]. Pattern Recognition, 2018, 78: 242-251. [5] 谭营, 王军. 手指静脉身份识别技术最新进展[J]. 智能系统学报, 2011, 6(6): 471-482. TAN Y, WANG J. Recent advances in finger vein based biometric techniques[J]. CAAI Transactions on Intelligent Systems, 2011, 6(6): 471-482. [6] HOU B R, ZHANG H J, YAN R Q. Finger-vein biometric recognition: a review[J]. IEEE Transactions on Instrumen-tation and Measurement, 2022, 71: 1-26. [7] LEE E C, LEE H C, KANG R P. Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction[J]. International Journal of Imaging Systems and Technology, 2009, 19(3): 179-186. [8] LU Y, XIE S J, YOON S, et al. Robust finger vein ROI localization based on flexible segmentation[J]. Sensors, 2013, 13(11): 14339. [9] YANG L, YANG G P, YIN Y L, et al. Sliding window-based region of interest extraction for finger vein images[J]. Sensors, 2013, 13(3): 3799-3815. [10] YANG L, YANG G P, ZHOU L Z, et al. Superpixel based finger vein ROI extraction with sensor interoperability[C]//Proceedings of the 2015 International Conference on Biometrics, Phuket, May 19-22,? 2015. Piscataway: IEEE, 2015: 444-451. [11] VANONI M, TOME P, SHAFEY L E, et al. Cross-database evaluation using an open finger vein sensor[C]//Proceedings of the 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Rome,Oct 17, 2014. Piscataway: IEEE, 2014: 30-35. [12] LIU Z, SONG S L. An embedded real-time finger-vein recognition system for mobile devices[J]. IEEE Transactions on Consumer Electronics, 2012, 58(2): 522-527. [13] LIU C X. A new finger vein feature extraction algorithm [C]//Proceedings of the 6th International Congress on Image and Signal Processing, Hangzhou, Dec 16-18, 2013. Piscataway: IEEE, 2013: 395-399. [14] QIU S R, LIU Y Q, ZHOU Y J, et al. Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical transformer[J]. Expert Systems with Applications, 2016, 64: 618-632. [15] KAUBA C, PICIUCCO E, MAIORANA E, et al. Advanced variants of feature level fusion for finger vein recognition[C]//Proceedings of the 2016 International Conference of the Biometrics Special Interest Group, Darmstadt, Sep 21-23, 2016. Piscataway: IEEE, 2016: 195-206. [16] YANG J F, SHI Y H. Towards finger-vein image restoration and enhancement for finger-vein recognition[J]. Information Sciences, 2014, 268: 33-52. [17] SHIN K Y, PARK Y H, NGUYEN D T, et al. Finger-vein image enhancement using a fuzzy-based fusion method with gabor and retinex filtering[J]. Sensors, 2014, 14(2): 3095-3129. [18] MIURA N, NAGASAKA A, MIYATAKE T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification[J]. Machine Vision and Applications, 2004, 15(4): 194-203. [19] MIURA N, NAGASAKA A, MIYATAKE T. Extraction of finger-vein patterns using maximum curvature points in image profiles[J]. IEICE Transactions on Information and Systems, 2007, 90(8): 1185-1194. [20] SYARIF M A, ONG T S, TEOH A B J, et al. Enhanced maximum curvature descriptors for finger vein verification[J]. Multimedia Tools and Applications, 2016, 76(5): 6859-6887. [21] CHOI J H, SONGA W, KIMA T, et al. Finger vein extraction using gradient normalization and principal curvature[C]// Image Processing: Machine Vision Applications II, 2009, 7251: 359-367. [22] HUANG B N, DAI Y G, LI R F, et al. Finger-vein authen-tication based on wide line detector and pattern normaliza-tion[C]//Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Aug 23-26, 2010. Piscataway: IEEE, 2010: 1269-1272. [23] LEE H C, KANG B J, LEE E C, et al. Finger vein recognition using weighted local binary pattern code based on a support vector machine[J]. Journal of Zhejiang University Science C, 2010, 11(7): 514-524. [24] 褚洪佳, 陈光化, 汪凯旋. 双重降维HOG结合SVM的快速手指静脉识别[J]. 红外技术, 2022, 44(3): 262-267. CHU H J, CHEN G H, WANG K X. Fast finger vein recognition based on a dual dimension reduction histogram of oriented gradient and support vector machine[J]. Infrared Technology, 2022, 44(3): 262-267. [25] WU J D, LIU C T. Finger-vein pattern identification using principal component analysis and the neural network technique[J]. Expert Systems with Applications, 2011, 38(5): 5423-5427. [26] YANG L, YANG G P, XI X M, et al. Finger vein code: from indexing to matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1210-1223. [27] LIU F, YIN Y L, YANG G P. Finger vein recognition with superpixel-based features[C]//Proceedings of the 2014 IEEE International Joint Conference on Biometrics, Clearwater, Sep 29-Oct 2, 2014. Piscataway: IEEE, 2014: 1-8. [28] KANG W X, LU Y T, LI D J, et al. From noise to feature: exploiting intensity distribution as a novel soft biometric trait for finger vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(4): 858-869. [29] YANG J F, WEI J Z, SHI Y H. Accurate ROI localization and hierarchical hyper-sphere model for finger-vein recognition[J]. Neurocomputing, 2019, 328: 171-181. [30] LU Y, YOON S, WU S Q, et al. Pyramid histogram of double competitive pattern for finger vein recognition[J]. IEEE Access, 2018, 6: 56445-56456. [31] YANG J F, SHI Y H, YANG J L. Personal identification based on finger-vein features[J]. Computers in Human Behavior, 2011, 27(5): 1565-1570. [32] ZHOU L S, YANG G P, YIN Y L, et al. Finger vein recognition based on stable and discriminative superpixels[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(6): 1650015. [33] SIKARWAR P, MANMOHAN. Finger vein recognition using local directional pattern[C]//Proceedings of the 2016 Inter-national Conference on Inventive Computation Technologies, Coimbatore, Aug 26-27, 2016. Piscataway: IEEE, 2017: 1-5. [34] HSIA C H. New verification strategy for finger-vein recogni-tion system[J]. IEEE Sensors Journal, 2018, 18(2): 790-797. [35] LEE E C, JUNG H, KIM D. New finger biometric method using near infrared imaging[J]. Sensors, 2011, 11(3): 2319-2333. [36] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. [37] HINTON G E, KRIZHEVSKY A, SUTSKEVER I. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25,Lake Tahoe, Dec 3-6, 2012: 1106-1114. [38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [39] MIRZA M, XU B, WARDE-FARLEY D, et al. Generative adversarial nets[C]//Advances in Neural Information Process-ing Systems 27, Montreal, Dec 8-13, 2014: 2672-2680. [40] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [41] RONNEBERGER O, FISCHER P, BROX T. U-Net: con-volutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [42] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861v1, 2017. [43] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 6848-6856. [44] HUANG G, LIU Z, MAATEN L V D. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. [45] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth [16×16] words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [46] YIN Y M, ZHANG R Y, LIU P F, et al. Artificial neural networks for finger vein recognition: a survey[J]. arXiv:2208.13341, 2022. [47] YIN Y L, LIU L L, SUN X W. SDUMLA-HMT: a multimodal biometric database[C]//LNCS 7098: Proceedings of the 6th Chinese Conference on Biometric Recognition, Beijing, Dec 3-4, 2011. Berlin, Heidelberg: Springer, 2011: 260-268. [48] ASAARI M S M, SUANDI S A, ROSDI B A. Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics[J]. Expert Systems with Applications, 2014, 41(7): 3367-3382. [49] KUMAR A, ZHOU Y B. Human identification using finger images[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2228-2244. [50] YANG W M, HUANG X L, ZHOU F, et al. Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion[J]. Information Sciences, 2014, 268: 20-32. [51] LU Y, XIE S J, YOON S, et al. An available database for the research of finger vein recognition[C]//Proceedings of the 6th International Congress on Image and Signal Process-ing, Hangzhou, Dec 16-18, 2013. Piscataway: IEEE, 2013: 410-415. [52] TON B T, VELDHUIS R N J. A high quality finger vascular pattern dataset collected using a custom designed capturing device[C]//Proceedings of the 2013 International Conference on Biometrics, Madrid, Jun 4-7, 2013. Piscataway: IEEE, 2013: 1-5. [53] TOME P, VANONI M, MARCEL S. On the vulnerability of finger vein recognition to spoofing[C]//Proceedings of the 2014 International Conference of the Biometrics Special Interest Group, Darmstadt, Sep 10-12, 2014. Piscataway: IEEE, 2014: 1-10. [54] KAUBA C, PROMMEGGER B, UHL A. Combined fully contactless finger and hand vein capturing device with a corresponding dataset[J]. Sensors, 2019, 19(22): 5014. [55] TANG S, ZHOU S, KANG W X, et al. Finger vein verification using a Siamese CNN[J]. IET Biometrics, 2019, 8(5): 306-315. [56] OU W F, PO L M, ZHOU C, et al. Fusion loss and inter-class data augmentation for deep finger vein feature learning[J]. Expert Systems with Applications, 2021, 171. [57] HONG H G, LEE M B, PARK K R. Convolutional neural network-based finger-vein recognition using NIR image sensors[J]. Sensors, 2017, 17(6): 1297. [58] DAS R, PICIUCCO E, MAIORANA E, et al. Convolutional neural network for finger-vein-based biometric identification[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(2): 360-373. [59] ZHANG J F, LU Z Y, LI M, et al. GAN-based image augmentation for finger-vein biometric recognition[J]. IEEE Access, 2019, 7: 183118-183132. [60] RADZI S A, KHALIL-HANI M, BAKHTERI R. Finger-vein biometric identification using convolutional neural network[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, 24(3): 1863-1878. [61] KUZU R S, PICIUCCO E, MAIORANA E, et al. On-the-fly finger-vein-based biometric recognition using deep neural networks[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2641-2654. [62] YEH J, CHAN H T, HSIA C H. ResNeXt with cutout for finger vein analysis[C]//Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Comm-unication Systems, Taiwan, China, Nov 16-19, 2021. Piscata-way: IEEE, 2021: 1-2. [63] HUANG Z, GUO C G. Robust finger vein recognition based on deep CNN with spatial attention and bias field correction[C]//Proceedings of the 12th International Conference on Advanced Computational Intelligence, Dali, Aug 14-16, 2020. Piscataway: IEEE, 2020: 614-619. [64] LI Y P, LU H M, WANG Y F, et al. ViT-Cap: a novel vision transformer-based capsule network model for finger vein recognition[J]. Applied Sciences, 2022, 12(20): 10364. [65] FANG Y X, WU Q X, KANG W X. A novel finger vein verification system based on two-stream convolutional network learning[J]. Neurocomputing, 2018, 290: 100-107. [66] HUANG H J, LIU S L, ZHENG H, et al. DeepVein: novel finger vein verification methods based on deep convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Identity, Security and Behavior Analysis,New Delhi, Feb 22-24, 2017. Piscataway: IEEE, 2017: 1-8. [67] KIM W, SONG J M, PARK K R. Multimodal biometric recognition based on convolutional neural network by the fusion of finger-vein and finger shape using near-infrared (NIR) camera sensor[J]. Sensors, 2018, 18(7): 2296. [68] SONG J M, KIM W, PARK K R. Finger-vein recognition based on deep DenseNet using composite image[J]. IEEE Access, 2019, 7: 66845-66863. [69] HUANG J D, LUO W J, YANG W L, et al. FVT: finger vein transformer for authentication[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5011813. [70] HOU B R, YAN R Q. Convolutional autoencoder model for finger-vein verification[J]. IEEE Transactions on Instrumenta-tion and Measurement, 2020, 69(5): 2067-2074. [71] HU H, KANG W X, LU Y T, et al. FV-Net: learning a finger-vein feature representation based on a CNN[C]//Proceedings of the 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Washington: IEEE Computer Society, 2018: 3489-3494. [72] ZHAO D D, MA H, YANG Z D, et al. Finger vein recognition based on lightweight CNN combining center loss and dynamic regularization[J]. Infrared Physics and Technology, 2020, 105: 103221. [73] LI J, YANG L K, YE M Q, et al. Finger vein verification on different datasets based on deep learning with triplet loss[J]. Computational and Mathematical Methods in Medicine, 2022: 4868435. [74] HOU B R, YAN R Q. Triplet-classifier GAN for finger-vein verification[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505112. [75] WANG G Q, SUN C M, SOWMYA A. Learning a compact vein discrimination model with GANerated samples[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 635-650. [76] YANG W M, HUI C Q, CHEN Z Q, et al. FV-GAN: finger vein representation using generative adversarial networks[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(9): 2512-2524. [77] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 1-48. [78] JALILIAN E, UHL A. Enhanced segmentation-CNN based finger-vein recognition by joint training with automatically generated and manual labels[C]//Proceedings of the 5th Inter-national Conference on Identity, Security, and Behavior Analysis, Hyderabad, Jan 22-24, 2019. Piscataway: IEEE, 2019: 1-8. [79] ZENG J Y, WANG F, DENG J X, et al. Finger vein verification algorithm based on fully convolutional neural network and conditional random field[J]. IEEE Access, 2020, 8: 65402-65419. [80] ZENG J Y, ZHU B Y, HUANG Y J, et al. Real-time segmentation method of lightweight network for finger vein using embedded terminal technique[J]. IEEE Access, 2021, 9: 303-316. [81] SONG Y Z, ZHAO P Y, YANG W M, et al. EIFNet: an explicit and implicit feature fusion network for finger vein verification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(5): 2520-2532. [82] LI X, LIN J Z, PANG Y, et al. Fingertip blood collection point localization research based on infrared finger vein image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. [83] CHEN Z Y, LIU J Z, CAO C W, et al. FV-UPatches: enhancing universality in finger vein recognition[J]. arXiv:2206.01061, 2022. [84] QIN H, EL YACOUBI M A. Deep representation for finger-vein image-quality assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(8): 1677-1693. [85] WANG Y, FANG P Y. A finger-vein image quality assessment algorithm combined with improved SMOTE and convolu-tional neural network[C]//Proceedings of the 11th International Conference on Software Engineering and Service Science, Beijing, Oct 16-18, 2020. Piscataway: IEEE, 2020: 1-4. [86] ZENG J Y, CHEN Y, QIN C B. Finger-vein image quality assessment based on light-CNN[C]//Proceedings of the 14th IEEE International Conference on Signal Processing, Beijing, Aug 12-16, 2018. Piscataway: IEEE, 2018: 768-773. [87] TAO Z Y, WANG H T, HU Y L, et al. DGLFV: deep generalized label algorithm for finger-vein recognition[J]. IEEE Access, 2021, 9: 78594-78606. [88] MA N, LI Y P, WANG Y F, et al. Research on ROI extraction algorithm for finger vein recognition based on capsule neural network[C]//Proceedings of the 2021 Inter- national Conference on Frontiers of Electronics, Information and Computation Technologies, Changsha, May 21-23, 2021. New York: ACM, 2021: 1-5. [89] YANG K N, FANG P Y, WU J. Deep learning-based region of interest extraction for finger vein images[J]. IOP Con-ference Series: Materials Science and Engineering, 2020, 782: 032056. [90] REN H Y, SUN L J, GUO J, et al. Finger vein recognition system with template protection based on convolutional neural network[J]. Knowledge-Based Systems, 2021, 227: 107159. [91] LIU Y, LING J, LIU Z S, et al. Finger vein secure biometric template generation based on deep learning[J]. Soft Computing, 2017, 22(7): 2257-2265. [92] SHAHREZA H O, MARCEL S. Towards protecting and enhancing vascular biometric recognition methods via biohashing and deep neural networks[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(3): 394-404. [93] GOH Z H, WANG Y D, LENG L, et al. A framework for multimodal biometric authentication systems with template protection[J]. IEEE Access, 2022, 10: 96388-96402. [94] SHAHEED K, MAO A, QURESHI I, et al. Finger-vein presentation attack detection using depthwise separable convolution neural network[J]. Expert Systems with App-lications, 2022, 198: 116786. [95] YANG W L, LUO W, KANG W X, et al. FVRAS-Net: an embedded finger-vein recognition and antispoofing system using a unified CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8690-8701. [96] SCHUIKI J, LINORTNER M, WIMMER G, et al. Attack detection for finger and palm vein biometrics by fusion of multiple recognition algorithms[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(4): 544-555. [97] 韩晶晶, 刘江越, 公维军, 等. 面向移动端的目标检测优化研究[J]. 计算机工程与应用, 2022, 58(24): 12-28. HAN J J, LIU J Y, GONG W J, et al. Object detection optimization research for mobile terminals[J]. Computer Engineering and Applications, 2022, 58(24): 12-28. [98] SHAHEED K, MAO A, QURESHI I, et al. DS-CNN: a pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition [J]. Expert Systems with Applications, 2022, 191: 116288. [99] REN H Y, SUN L J, GUO J, et al. A dataset and benchmark for multimodal biometric recognition based on fingerprint and finger vein[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2030-2043. [100] HOWARD A, SANDLER M, CHU B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision, Seoul, Oct 27, 2019. Piscataway: IEEE, 2019: 1314-1324. [101] TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Procee-dings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 2815-2823. [102] TAMANG L D, KIM B W. FVR-Net: finger vein recognition with convolutional neural network using hybrid pooling[J]. Applied Sciences, 2022, 12(5): 7538. [103] HOU B R, YAN R Q. ArcVein-Arccosine center loss for finger vein verification[J]. IEEE Transactions on Instru-mentation and Measurement, 2021, 70: 1-11. [104] KUZU R S, MAIORANA E, CAMPISI P. Vein-based biometric verification using densely-connected convolutional auto-encoder[J]. IEEE Signal Processing Letters, 2020, 27: 1869-1873. [105] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 7132-7141. [106] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539. [107] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th Europeon Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. [108] HUANG J D, TU M, YANG W L, et al. Joint attention network for finger vein authentication[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. [109] WANG K X, CHEN G H, CHU H J. Finger vein recognition based on multi-receptive field bilinear convolutional neural network[J]. IEEE Signal Processing Letters, 2021, 28: 1590- 1594. [110] WANG H, WANG Y T, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 5265-5274. [111] DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 4685-4694. [112] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 815-823. [113] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//LNCS 9911: Proceedings of the 14th European Conference on Computer Vision, Netherlands, Oct 11-14, 2016. Cham: Springer, 2016: 499-515. [114] KUZU R S, MAIORANA E, CAMPISI P. Loss functions for CNN-based biometric vein recognition[C]//Proceedings of the 28th European Signal Processing Conference, Amster- dam, Jan 18-21, 2021. Piscataway: IEEE, 2021: 750-754. [115] TRAN N C, WANG J H, VU T H, et al. Anti?aliasing convolution neural network of finger vein recognition for virtual reality (VR) human-robot equipment of metaverse [J]. The Journal of Supercomputing, 2023, 79: 2767-2782. [116] KANG W X, LIU H D, LUO W, et al. Study of a full-view 3D finger vein verification technique[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1175-1189. [117] KAMARUDDIN N M, ROSDI B A. A new filter generation method in PCANet for finger vein recognition[J]. IEEE Access, 2019, 7: 132966-132978. [118] ZHONG Y Q, LI J H, CHAI T T, et al. Different dimension issues in deep feature space for finger-vein recognition[C]//LNCS 12878: Proceedings of the Chinese Conference on Biometric Recognition, Shanghai, Sep 10-12, 2021. Cham: Springer, 2021: 295-303. [119] SHEN J Q, LIU N Z, XU C L, et al. Finger vein recognition algorithm based on lightweight deep convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. [120] WANG Y, SHI D K, ZHOU W B. Convolutional neural network approach based on multimodal biometric system with fusion of face and finger vein features[J]. Sensors, 2022, 22(16): 6039. [121] BOUCHERIT I, ZMIRLI M O, HENTABLI H, et al. Finger vein identification using deeply-fused convolutional neural network[J]. Journal of King Saud University— Computer and Information Sciences, 2022, 34(4): 646-656. [122] LI S Y, MA R J, FEI L K, et al. Learning compact multi-representation feature descriptor for finger-vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1946-1958. [123] ALDJIA B, LEILA B. Biometric authentication using finger-vein patterns with deep-learning and discriminant correlation analysis[J]. International Journal of Image and Graphics, 2022, 22(1): 2250013. [124] NOH K J, CHOI J, HONG J S, et al. Finger-vein recognition using heterogeneous databases by domain adaption based on a cycle-consistent adversarial network[J]. Sensors, 2021, 21: 524. [125] LIN L Y, LIU H Z, ZHANG W T, et al. Finger vein verifica-tion using intrinsic and extrinsic features[C]//Proceedings of the 2021 IEEE International Joint Conference on Biometrics, Shenzhen, Aug 4-7, 2021. Piscataway: IEEE, 2021: 1-7. [126] LI H C, LYU Y, DUAN G D, et al. Improving finger vein discriminant representation using dynamic margin softmax loss[J]. Neural Computing and Applications, 2022, 34: 3589-3601. [127] HUANG J D, ZHENG A, SHAKEEL M S, et al. FVFSNet: frequency-spatial coupling network for finger vein aut-hentication[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1322-1334. [128] CHERRAT E M, ALAOUI R, BOUZAHIR H. Convolu-tional neural networks approach for multimodal biometric identification system using the fusion of fingerprint, finger-vein and face images[J]. PeerJ Computer Science, 2020, 6: e248. [129] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [130] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002. [131] ZHU X Z, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020. [132] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceed-ings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 13609-13617. [133] 吴凯, 沈文忠, 贾丁丁, 等. 融合Transformer和CNN的手掌静脉识别网络[J/OL]. 计算机工程与应用(2022-11-10)[2023-04-16]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20221109.1109.002.html. WU K, SHEN W Z, JIA D D, et al. Palm vein recognition network combining Transformer and CNN[J/OL]. Computer Engineering and Applications (2022-11-10)[2023-04-16]. http://kns.cnki.net/kcms/detail/11.2127.TP.20221109.1109.002. html. |
[1] | 王兵, 黄刚, 张兴鹏. 融合卷积特征的清晰边缘检测研究[J]. 计算机科学与探索, 2023, 17(9): 2148-2160. |
[2] | 赵婷婷, 孙威, 陈亚瑞, 王嫄, 杨巨成. 潜在空间中深度强化学习方法研究综述[J]. 计算机科学与探索, 2023, 17(9): 2047-2074. |
[3] | 刘华玲, 陈尚辉, 曹世杰, 朱建亮, 任青青. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. |
[4] | 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. |
[5] | 季长清, 王兵兵, 秦静, 汪祖民. 深度特征的实例图像检索算法综述[J]. 计算机科学与探索, 2023, 17(7): 1565-1575. |
[6] | 吴水秀, 罗贤增, 熊键, 钟茂生, 王明文. 知识追踪研究综述[J]. 计算机科学与探索, 2023, 17(7): 1506-1525. |
[7] | 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548. |
[8] | 张如琳, 王海龙, 柳林, 裴冬梅. 音乐自动标注分类方法研究综述[J]. 计算机科学与探索, 2023, 17(6): 1225-1248. |
[9] | 梁宏涛, 刘硕, 杜军威, 胡强, 于旭. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300. |
[10] | 刘京, 赵薇, 董泽浩, 王少华, 王余. 融合多尺度自注意力机制的运动想象信号解析[J]. 计算机科学与探索, 2023, 17(6): 1427-1440. |
[11] | 曹义亲, 饶哲初, 朱志亮, 万穗. 双通道四元数卷积网络去噪方法[J]. 计算机科学与探索, 2023, 17(6): 1359-1372. |
[12] | 曹斯铭, 王晓华, 王弘堃, 曹轶. MSV-Net:面向科学模拟面体混合数据的超分重建方法[J]. 计算机科学与探索, 2023, 17(6): 1321-1328. |
[13] | 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111. |
[14] | 孙家泽, 唐彦梅, 王曙燕. 利用GAN和特征金字塔的模型鲁棒性优化方法[J]. 计算机科学与探索, 2023, 17(5): 1139-1146. |
[15] | 钱汉伟, 孙伟松. 深度神经网络中的后门攻击与防御技术综述[J]. 计算机科学与探索, 2023, 17(5): 1038-1048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||