计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (11): 2823-2847.DOI: 10.3778/j.issn.1673-9418.2308100
田萱,李嘉梁,孟晓欢
出版日期:
2024-11-01
发布日期:
2024-10-31
TIAN Xuan, LI Jialiang, MENG Xiaohuan
Online:
2024-11-01
Published:
2024-10-31
摘要: 自动文本摘要(ATS)是自然语言处理的热门研究方向,主要实现方法分为抽取式和生成式两类。抽取式摘要直接采用源文档中的文字内容,相比生成式摘要具有更高的语法正确性和事实正确性,在政策解读、官方文件总结、法律和医药等要求较为严谨的领域具有广泛应用前景。目前基于深度学习的抽取式摘要研究受到广泛关注。主要梳理了近几年基于深度学习的抽取式摘要技术研究进展;针对抽取式摘要的两个关键步骤——文本单元编码和摘要抽取,分别分析了相关研究工作。根据模型框架的不同,将文本单元编码方法分为层级序列编码、基于图神经网络的编码、融合式编码和基于预训练的编码四类进行介绍;根据摘要抽取阶段抽取粒度的不同,将摘要抽取方法分为文本单元级抽取和摘要级抽取两类进行分析。介绍了抽取式摘要任务常用的公共数据集和性能评估指标。预测并分析总结了该领域未来可能的研究方向及相应的发展趋势。
田萱, 李嘉梁, 孟晓欢. 基于深度学习的抽取式摘要研究综述[J]. 计算机科学与探索, 2024, 18(11): 2823-2847.
TIAN Xuan, LI Jialiang, MENG Xiaohuan. Survey of Deep Learning Based Extractive Summarization[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2823-2847.
[1] CHENG J, LAPATA M. Neural summarization by extracting sentences and words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 484-494. [2] KUMAR N, REDDY M. Factual instance tweet summarization and opinion analysis of sport competition[C]//Proceedings of the 2018 International Conference on Soft Computing and Signal Processing. Singapore: Springer, 2019, 2: 153-162. [3] COHAN A, DERNONCOURT F, KIM D S, et al. A discourse-aware attention model for abstractive summarization of long documents[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2019: 615-621. [4] AGARWAL A, XU S, GRABMAIR M. Extractive summarization of legal decisions using multi-task learning and maximal marginal relevance[C]//Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, Dec 7-11, 2022. Stroudsburg: ACL, 2022: 1857-1872. [5] ZHUANG Y, LU Y, WANG S. Weakly supervised extractive summarization with attention[C]//Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, Singapore, Jul 29-31, 2021. Stroudsburg: ACL, 2021: 520-529. [6] 侯丽微, 胡珀, 曹雯琳. 主题关键词信息融合的中文生成式自动摘要研究[J]. 自动化学报, 2019, 45(3): 530-539. HOU L W, HU P, CAO W L. Automatic Chinese abstractive summarization with topical keywords fusion[J]. Acta Automatica Sinica, 2019, 45(3): 530-539. [7] 石磊, 阮选敏, 魏瑞斌,等. 基于序列到序列模型的生成式文本摘要研究综述[J]. 情报学报, 2019, 38(10): 1102-1116. SHI L, RUAN X M, WEI R B, et al. Abstractive summarization based on sequence to sequence models: a review[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(10): 1102-1116. [8] 李金鹏, 张闯, 陈小军, 等. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. LI J P, ZHANG C, CHEN X J,et al. Survey on automatic text summarization[J]. Journal of Computer Research and Development, 2021, 58(1): 1-21. [9] HOU S L, HUANG X K, FEI C, et al. A survey of text summarization approaches based on deep learning[J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663. [10] YADAV A K, RANVIJAY, YADAV R S, et al. State-of-the-art approach to extractive text summarization: a comprehensive review[J]. Multimedia Tools and Applications, 2023, 82(19): 29135-29197. [11] EDMUNDSON H P. New methods in automatic extracting[J]. Journal of the ACM, 1969, 16(2): 264-285. [12] ERKAN G, RADEV D R. LexRank: graph-based lexical centrality as salience in text summarization[J]. Journal of Artificial Intelligence Research, 2004, 22: 457-479. [13] GONG Y, LIU X. Generic text summarization using relevance measure and latent semantic analysis[C]//Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, Sep 9-12, 2001. New York: ACM, 2001: 19-25. [14] YIN W, PEI Y. Optimizing sentence modeling and selection for document summarization[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 1383-1389. [15] CAO Z, WEI F, DONG L,et al. Ranking with recursive neural networks and its application to multi-document summarization[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, 2015. Menlo Park: AAAI, 2015: 2153-2159. [16] MIKOLOV T, SUTSKEVER I, CHEN K,et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems 26: Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, 2013: 3111-3119. [17] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543. [18] ZHOU Q, YANG N, WEI F,et al. Neural document summarization by jointly learning to score and select sentences[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 654-663. [19] NALLAPATI R, ZHAI F, ZHOU B. SummaRuNNer: a recurrent neural network based sequence model for extractive summarization of documents[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3075-3081. [20] LUO L, AO X, SONG Y,et al. Reading like her: human reading inspired extractive summarization[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3031-3041. [21] FENG C, CAI F, CHEN H,et al. Attentive encoder-based extractive text summarization[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 1499-1502. [22] JIN H, WANG T, WAN X. Multi-granularity interaction network for extractive and abstractive multi-document summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6244-6254. [23] DIAO Y, LIN H, YANG L, et al. CRHASum: extractive text summarization with contextualized-representation hierarchical-attention summarization network[J]. Neural Computing & Applications: 2020, 32(15): 11491-11503. [24] CAO Z, WEI F, LI S, et al. Learning summary prior representation for extractive summarization[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Beijing, Jul 26-31, 2015. Menlo Park: AAAI, 2015: 2153-2159. [25] CHEN X, GAO S, TAO C,et al. Iterative document representation learning towards summarization with polishing[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4088-4097. [26] SINGH A, GUPTA M, VARMA V. Hybrid MemNet for extractive summarization[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York, USA: ACM, 2017: 2303-2306. [27] SUKHBAATAR S, SZLAM A, WESTON J,et al. End-to-end memory networks[C]//Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, 2015: 2440-2448. [28] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017. [29] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018. [30] ANTOGNINI D, FALTINGS B. Learning to create sentence semantic relation graphs for multi-document summarization[C]//Proceedings of the 2nd Workshop on New Frontiers in Summarization, Hong Kong, China, 2019. Stroudsburg: ACL, 2019: 32-41. [31] YASUNAGA M, KASAI J, ZHANG R,et al. ScisummNet: a large annotated corpus and content-impact models for scientific paper summarization with citation networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 7386-7393. [32] JAIDKA K, CHANDRASEKARAN M K, RUSTAGI S, et al. Overview of the CL-SciSumm 2016 shared task[C]//Proceedings of the Joint Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language Processing for Digital Libraries co-located with the Joint Conference on Digital Libraries 2016, Newark, Jun 23, 2016: 93-102. [33] WANG D, LIU P, ZHENG Y, et al. Heterogeneous graph neural networks for extractive document summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6209-6219. [34] MAO Q, ZHU H, LIU J,et al. MuchSUM: multi-channel graph neural network for extractive summarization[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2617-2622. [35] CHRISTENSEN J, MAUSAM, SODERLAND S, et al. Towards coherent multi-document summarization[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association of Computational Linguistics: Human Language Technologies, Atlanta, Jun 9-14, 2013. Stroudsburg: ACL, 2013: 1163-1173. [36] YASUNAGA M, ZHANG R, MEELU K,et al. Graph-based neural multi-document summarization[C]//Proceedings of the 21st Conference on Computational Natural Language Learning, Vancouver, Aug 3-4, 2017. Stroudsburg: ACL, 2017: 452-462. [37] XU J, GAN Z, CHENG Y,et al. Discourse-aware neural extractive text summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 5021-5031. [38] MANN W, THOMPSON S. Rhetorical structure theory: toward a functional theory of text organization[J]. Text-Interdiscip-linary Journal for the Study of Discourse, 1988, 8(3): 243-281. [39] JIA R, CAO Y, TANG H,et al. Neural extractive summarization with hierarchical attentive heterogeneous graph network[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 3622-3631. [40] LIU Y, ZHANG J, WAN Y,et al. HETFORMER: heterogeneous transformer with sparse attention for long-text extractive summarization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 146-154. [41] JING B, YOU Z, YANG T, et al. Multiplex graph neural network for extractive text summarization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 133-139. [42] MAO Q, ZHAO S, LI J, et al. Bipartite graph pre-training for unsupervised extractive summarization with graph convolutional auto-encoders[C]//Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 4929-4941. [43] KWON J, KOBAYASHI N, KAMIGAITO H, et al. Considering nested tree structure in sentence extractive summarization with pre-trained transformer[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 4039-4044. [44] GUAN Y, GUO S, LI R,et al. Frame semantic-enhanced sentence modeling for sentence-level extractive text summarization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 4045-4052. [45] BAKER C F, FILLMORE C J, LOWE J B. The Berkeley framenet project[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Montreal, 1998. Stroudsburg: ACL, 1998: 86-90. [46] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [47] ZHANG X X, WEI F R, ZHOU M. HIBERT: document level pre-training of hierarchical bidirectional transformers for document summarization[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 5059-5069. [48] WANG H, WANG X, XIONG W, et al. Self-supervised learning for contextualized extractive summarization[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 2221-2227. [49] XU S, ZHANG X, WU Y, et al. Unsupervised extractive summarization by pre-training hierarchical transformers[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 1784-1795. [50] JIA R, ZHANG X, CAO Y,et al. Neural label search for zero-shot multi-lingual extractive summarization[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, May 22-27, 2022. Stroudsburg: ACL, 2022: 561-570. [51] CONNEAU A, KHANDELWAL K, GOYAL N,et al. Unsupervised cross-lingual representation learning at scale[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 8440-8451. [52] SCIALOM T, DRAY P A, LAMPRIER S,et al. MLSUM: the multilingual summarization corpus[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 8051-8067. [53] LADHAK F, DURMUS E, CARDIE C,et al. WikiLingua: a new benchmark dataset for cross-lingual abstractive summarization[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 4034-4048. [54] LIU Y, LAPATA M. Text summarization with pretrained encoders[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3728-3738. [55] ZHENG H, LAPATA M. Sentence centrality revisited for unsupervised summarization[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 6236-6247. [56] SINGH A K, GUPTA M, VARMA V. Unity in diversity: Learning distributed heterogeneous sentence representation for extractive summarization[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5473-5480. [57] CHO S, LI C, YU D,et al. Multi-document summarization with determinantal point processes and contextualized representations[C]//Proceedings of the 2nd Workshop on New Frontiers in Summarization, Hong Kong, China, 2019. Stroudsburg: ACL, 2019: 98-103. [58] SHARMA E, HUANG L, HU Z, et al. An entity-driven framework for abstractive summarization[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3278-3289. [59] JOSHI A, FIDALGO E, ALEGRE E, et al. DeepSumm: exploiting topic models and sequence to sequence networks for extractive text summarization[J]. Expert Systems with Applications, 2023, 211: 118442. [60] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022. [61] ZHENG X, SUN A, LI J, et al. Subtopic-driven multi-document summarization[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3151-3160. [62] NARAYAN S, PAPASARANTOPOULOS N, LAPATA M, et al. Neural extractive summarization with side information[EB/OL]. [2023-07-12]. https://arXiv.1704.04530. [63] ABDI A, HASAN S, SHAMSUDDIN S M,et al. A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion[J]. Knowledge-Based Systems, 2021, 213: 106658. [64] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized auto-regressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 5754-5764. [65] JADHAV A, RAJAN V. Extractive summarization with swap-net: sentences and words from alternating pointer networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 142-151. [66] ZHU T, HUA W, QU J, et al. Auto-regressive extractive summarization with replacement[J]. World Wide Web, 2023, 26(4): 2003-2026. [67] PAULUS R, XIONG C, SOCHER R. A deep reinforced model for abstractive summarization[C]//Proceedings of the 6th International Conference on Learning Representations Vancouver, Apr 30-May 3, 2018. [68] LIU Z, SHI K, CHEN N F. Conditional neural generation using sub-aspect functions for extractive news summarization[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 1453-1463. [69] KEDZIE C, MCKEOWN K, III H. Content selection in deep learning models of summarization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 1818-1828. [70] ISONUMA M, FUJINO T, MORI J, et al. Extractive summarization using multi-task learning with document classification[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 2101-2110. [71] MACHIDA K, ISHIGAKI T, KOBAYASHI H, et al. Semi-supervised extractive question summarization using question-answer pairs[C]//Proceedings of the 42nd European Conference on IR Research, Lisbon, Apr 14-17, 2020. Cham: Springer, 2020: 255-264. [72] CAO Z, LI W, LI S, et al. Improving multi-document summarization via text classification[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3053-3059 [73] NARAYAN S, COHEN S B, LAPATA M. Ranking sentences for extractive summarization with reinforcement learning[C]//Proceedings of the 2018 Conference of the North American Chapter of the ACL: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 1747-1759. [74] ZHANG X, LAPATA M, WEI F, et al. Neural latent extractive document summarization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 779-784. [75] DONG Y, SHEN Y, CRAWFORD E, et al. BanditSum: extractive summarization as a contextual bandit[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 3739-3748. [76] WU Y, HU B. Learning to extract coherent summary via deep reinforcement learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5602-5609. [77] ARUMAE K, LIU F. Reinforced extractive summarization with question-focused rewards[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 105-111. [78] SHI J, LIANG C, HOU L, et al. DeepChannel: salience estimation by contrastive learning for extractive document summarization[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 6999-7006. [79] ZHONG M, LIU P, CHEN Y, et al. Extractive summarization as text matching[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6197-6208. [80] GONG S, ZHENFANG Z, QI J, et al. SeburSum: a novel set-based summary ranking strategy for summary-level extractive summarization[J]. The Journal of Supercomputing, 2023, 79(12): 12949-12977. [81] XU J, DURRETT G. Neural extractive text summarization with syntactic compression[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3290-3301. [82] DESAI S, XU J, DURRETT G. Compressive summarization with plausibility and salience modeling[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 6259-6274. [83] MENDES A, NARAYAN S, MIRANDA S, et al. Jointly extracting and compressing documents with summary state representations[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 3955-3966. [84] CHEN Y C, BANSAL M. Fast abstractive summarization with reinforce-selected sentence rewriting[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 675-686. [85] XIAO L, WANG L, HE H, et al. Copy or rewrite: hybrid summarization with hierarchical reinforcement learning[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 9306-9313. [86] HSU W T, LIN C K, LEE M Y, et al. A unified model for extractive and abstractive summarization using inconsistency loss[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 132-141. [87] GEHRMANN S, DENG Y, RUSH A M. Bottom-up abstractive summarization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4098-4109. [88] BAO G, ZHANG Y. Contextualized rewriting for text summarization[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 12544-12553. [89] MA C, ZHANG W E, GUO M, et al. Multi-document summarization via deep learning techniques: a survey[J]. ACM Computing Surveys, 2023, 55(5): 102. [90] 侯圣峦, 张书涵, 费超群. 文本摘要常用数据集和方法研究综述[J]. 中文信息学报, 2019, 33(5): 1-16. HOU S L, ZHANG S H, FEI C Q. A survey to text summarization: popular datasets and method[J]. Journal of Chinese Information Processing, 2019, 33(5): 1-16. [91] HERMANN K M, KOCISKY T, GREFENSTETTE E, et al. Teaching machines to read and comprehend[C]//Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015: 1693-1701. [92] NALLAPATI R, ZHOU B, SANTOS C, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, Berlin, Aug 11-12, 2016. Stroudsburg: ACL, 2016: 280-290. [93] EVAN S. The New York Times annotated corpus[J]. Linguistic Data Consortium, 2008, 6(12): e26752. [94] FABBRI A R, LI I, SHE T, et al. Multi-news: a large-scale multi-document summarization dataset and abstractive hierarchical model[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1074-1084. [95] FONSECA M D, ISHIKAWA E, NETO B M, et al. Tool for semantic annotation of business processes in a newsroom[C]//Proceedings of the XI Seminar on Ontology Research in Brazil and Doctoral and Masters Consortium on Ontologies, Paulo, Oct 1-3, 2018: 239-244. [96] CHU E, LIU P J. MeanSum: a neural model for unsupervised multi-document abstractive summarization[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 1223-1232. [97] HU B, CHEN Q, ZHU F. LCSTS: a large scale Chinese short text summarization dataset[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1967-1972. [98] LIN C Y. Rouge: a package for automatic evaluation of summaries[C]//Proceedings of the Workshop on Text Summarization Branches, Barcelona, 2004. Stroudsburg: ACL, 2004: 74-81. [99] ZHANG T, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020. Stroudsburg: ACL, 2020: 1-43. [100] ZHAO W, PEYRARD M, LIU F, et al. MoverScore: text generation evaluating with contextualized embeddings and earth mover distance[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 563-578. [101] CLARK E, CELIKYILMAZ A, SMITH N A. Sentence mover??s similarity: automatic evaluation for multi-sentence texts[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 2748-2760. [102] MIHALCEA R, TARAU P. TextRank: bringing order into text[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Jul 25-26, 2004. Stroudsburg: ACL, 2004: 404-411. [103] ZHANG H, LIU X, ZHANG J, DiffuSum: generation enhanced extractive summarization with diffusion[C]//Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 13089-13100. [104] ZHANG H, LIU X, ZHANG J, Extractive summarization via ChatGPT for faithful summary generation[C]//Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 3270-3278. [105] MISHRA N, SAHU G, CALIXTO I, et al. LLM aided semi-supervision for efficient extractive dialog summarization[C]//Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 10002-10009. [106] DENKOWSKI M J, LAVIE A. Meteor universal: language specific translation evaluation for any target language[C]//Proceedings of the 9th Workshop on Statistical Machine Translation, Baltimore, Jun 26-27, 2014. Stroudsburg: ACL, 2014: 376-380. [107] MILLER G. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [108] PARIDA S, MOTLíCEK P. Abstract text summarization: a low resource challenge[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5993-5997. [109] CHEN Y, SHUAI H. Meta-transfer learning for low-resource abstractive summarization[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 12692-12700. [110] JIE R, MENG X, JIANG X, et al. Unsupervised extractive summarization with learnable length control strategies[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Feb 20-27, 2024. Menlo Park: AAAI, 2024: 18372-18380. [111] ZHAO T, HE R, XU J, et al. MultiSum: a multi-facet approach for extractive social summarization utilizing semantic and sociological relationships[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Feb 20-27, 2024. Menlo Park: AAAI, 2024: 19661-19669. [112] VO S, VO T, LE B. Interpretable extractive text summarization with meta-learning and Bi-LSTM: a study of meta learning and explainability techniques[J]. Expert Systems with Applications, 2024, 245: 123045. [113] ZHANG J, LU L, ZHANG L, et al. DCDSum: an interpretable extractive summarization framework based on contrastive learning method[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108148. [114] MAO Y, QU Y, XIE Y, et al. Multi-document summarization with maximal marginal relevance-guided reinforcement learning[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1737-1751. [115] XIE Q, BISHOP J, TIWARI P, et al. Pre-trained language models with domain knowledge for biomedical extractive summarization[J]. Knowledge-Based Systems, 2022, 252: 10946. [116] DEROY A,?GHOSH K,?GHOSH S. Ensemble methods for improving?extractive?summarization?of legal case judgements[J].?Artificial Intelligence and Law, 2024, 32:?231-289. |
[1] | 李子奇, 苏宇轩, 孙俊, 张永宏, 夏庆锋, 尹贺峰. 基于深度学习的多聚焦图像融合方法前沿进展[J]. 计算机科学与探索, 2024, 18(9): 2276-2292. |
[2] | 连哲, 殷雁君, 智敏, 徐巧枝. 自然场景文本检测中可微分二值化技术综述[J]. 计算机科学与探索, 2024, 18(9): 2239-2260. |
[3] | 方博儒, 仇大伟, 白洋, 刘静. 表面肌电信号在肌肉疲劳研究中的应用综述[J]. 计算机科学与探索, 2024, 18(9): 2261-2275. |
[4] | 汪有崧, 裴峻鹏, 李增辉, 王伟. 深度学习的视网膜血管分割研究综述[J]. 计算机科学与探索, 2024, 18(8): 1960-1978. |
[5] | 叶庆文, 张秋菊. 采用通道像素注意力的多标签图像识别[J]. 计算机科学与探索, 2024, 18(8): 2109-2117. |
[6] | 韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. |
[7] | 利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724. |
[8] | 侯鑫, 王艳, 王绚, 范伟. 全景影像在城市研究中的应用进展综述[J]. 计算机科学与探索, 2024, 18(7): 1661-1682. |
[9] | 江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437. |
[10] | 蒲秋梅, 殷帅, 李正茂, 赵丽娜. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403. |
[11] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[12] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[13] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[14] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[15] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||