[1] 李俊卓, 昝红英, 闫英杰, 等. 儿科疾病及保健知识问答系统的构建[J]. 中文信息学报, 2022, 36(1): 127-134.
LI J Z, ZAN H Y, YAN Y J, et al. Question answering system for pediatric diseases and health care knowledge[J]. Journal of Chinese Information Processing, 2022, 36(1): 127-134.
[2] 陈璟浩, 曾桢, 李纲. 基于知识图谱的“一带一路”投资问答系统构建[J]. 图书情报工作, 2020, 64(12): 95-105.
CHEN J H, ZENG Z, LI G. A question answering system for“the Belt and Road” investment based on knowledge graph[J]. Library and Information Service, 2020, 64(12): 95-105.
[3] GUO Q, WANG X, ZHU Z, et al. A knowledge inference model for question answering on an incomplete knowledge graph[J]. Applied Intelligence, 2023, 53(7): 7634-7646.
[4] 廖开际, 黄琼影, 席运江. 在线医疗社区问答文本的知识图谱构建研究[J]. 情报科学, 2021, 39(3): 51-59.
LIAO K J, HUANG Q Y, XI Y J. Knowledge graph construction of online medical community Q&A texts[J]. Information Science, 2021, 39(3): 51-59.
[5] YUAN J B, JIN Z W, GUO H, et al. Constructing biomedical domain-specific knowledge graph with minimum supervision[J]. Knowledge and Information Syestems, 2020, 62(1): 317-336.
[6] BEN ABACHA A, ZWEIGENBAUM P. Means: a medical question-answering system combining NLP techniques and semantic Web technologies[J]. Information Processing & Management, 2015, 51(5): 570-594.
[7] 王守会, 覃飙. 知识库问答系统研究进展[J]. 小型微型计算机系统, 2021, 42(9): 1793-1801.
WANG S H, QIN B. Research progress of knowledge base question answering[J]. Journal of Chinese Computer Systems, 2021, 42(9): 1793-1801.
[8] ZHU S G, CHENG X, SU S. Knowledge-based question answering by tree-to-sequence learning[J]. Neurocomputing, 2020, 372: 64-72.
[9] HU X, DUAN J L, DANG D P. Natural language question answering over knowledge graph: the marriage of SPARQL query and keyword search[J]. Knowledge and Information Systems, 2021, 63(4): 819-844.
[10] 曾帅, 王帅, 袁勇, 等. 面向知识自动化的自动问答研究进展[J]. 自动化学报, 2017, 43(9): 1491-1508.
ZENG S, WANG S, YUAN Y, et al. Towards knowledge automation: a survey on question answering systems[J]. Acta Automatica Sinica, 2017, 43(9): 1491-1508.
[11] 郑泳智, 朱定局, 吴惠粦, 等. 知识图谱问答领域综述[J]. 计算机系统应用, 2022, 31(4): 1-13.
ZHENG Y Z, ZHU D J, WU H L, et al. Overview on knowledge graph question answering[J]. Computer Systems & Applications, 2022, 31(4): 1-13.
[12] LAN Y S, HE G L, JIANG J H, et al. Complex knowledge base question answering: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11196-11215.
[13] 陈跃鹤, 贾永辉, 谈川源, 等. 基于知识图谱全局和局部特征的复杂问答方法[J]. 软件学报, 2023, 34(12): 5614-5628.
CHEN Y H, JIA Y H, TAN C Y, et al. Method for complex question answering based on global and local features of knowledge graph[J]. Journal of Software, 2023, 34(12): 5614-5628.
[14] 李贺, 刘嘉宇, 李世钰, 等. 基于疾病知识图谱的自动问答系统优化研究[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
LI H, LIU J Y, LI S Y, et al. Optimizing automatic question answering system based on disease knowledge graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(5): 115-126.
[15] 王寅秋, 虞为, 陈俊鹏. 融合知识图谱的中文医疗问答社区自动问答研究[J]. 数据分析与知识发现, 2023, 7(3): 97-109.
WANG Y Q, YU W, CHEN J P. Automatic question-answering in Chinese medical Q&A community with knowledge graph[J]. Data Analysis and Knowledge Discovery, 2023, 7(3): 97-109.
[16] 范俊杰, 马海群, 刘兴丽. 基于开源情报的军事知识图谱问答智能服务研究[J]. 数据分析与知识发现, 2024, 8(7): 118-127.
FAN J J, MA H Q, LIU X L. Smart question-answering service for military knowledge graphs based on open-source intelligence[J]. Data Analysis and Knowledge Discovery, 2024, 8(7): 118-127.
[17] 曹明宇, 李青青, 杨志豪, 等. 基于知识图谱的原发性肝癌知识问答系统[J]. 中文信息学报, 2019, 33(6): 88-93.
CAO M Y, LI Q Q, YANG Z H, et al. A question answering system for primary liver cancer based on knowledge graph [J]. Journal of Chinese Information Processing, 2019, 33(6): 88-93.
[18] 乔凯, 陈可佳, 陈景强. 基于知识图谱与关键词注意机制的中文医疗问答匹配方法[J]. 模式识别与人工智能, 2021, 34(8): 733-741.
QIAO K, CHEN K J, CHEN J Q. Chinese medical question answering matching method based on knowledge graph and keyword attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(8): 733-741.
[19] 冯钧, 李艳, 杭婷婷. 问答系统中复杂问题分解方法研究综述[J]. 计算机工程与应用, 2022, 58(17): 23-33.
FENG J, LI Y, HANG T T. Survey on question decomposition method in question answering system[J]. Computer Engineering and Applications, 2022, 58(17): 23-33.
[20] HAO Y, ZHANG Y, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 221-231.
[21] 韩普, 顾亮. 基于混合深度学习的中文医学实体抽取研究 [J]. 图书情报工作, 2022, 66(14): 119-127.
HAN P, GU L. Research on extraction of Chinese medical entities based on hybrid deep learning[J]. Library and Information Service, 2022, 66(14): 119-127.
[22] 温有奎, 温浩, 乔晓东. 让知识产生智慧—基于人工智能的文本挖掘与问答技术研究[J]. 情报学报, 2019, 38(7): 722-730.
WEN Y K, WEN H, QIAO X D. Research on the methods of information science and artificial intelligence fusion innovation[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(7): 722-730.
[23] BAKHSHI M, NEMATBAKHSH M, MOHSENZADEH M, et al. Data-driven construction of SPARQL queries by approximate question graph alignment in question answering over knowledge graphs[J]. Expert Systems with Applications, 2020, 146: 113205.
[24] 罗玲, 李硕凯, 何清, 等. 基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统[J]. 智能系统学报, 2021, 16(4): 819-826.
LUO L, LI S K, HE Q, et al. Winter Olympic Q&A system based on knowledge map, TF-IDF and BERT model[J]. CAAI Transactions on Intelligent Systems, 2021, 16(4): 819-826.
[25] 张云中, 郭冬, 王亚鸽, 等. 基于知识图谱的红色历史人物知识问答服务框架研究[J]. 图书情报工作, 2021, 65(16): 108-117.
ZHANG Y Z, GUO D, WANG Y G, et al. Framework of knowledge Q&A service for red historical figures based on knowledge graph[J]. Library and Information Service, 2021, 65(16): 108-117.
[26] 马自力, 王淑营, 张海柱, 等. 基于知识图谱的智能问答意图识别联合模型[J]. 计算机工程与应用, 2023, 59(6): 171-178.
MA Z L, WANG S Y, ZHANG H Z, et al. Joint model of intelligent Q&A intent recognition based on knowledge graph[J]. Computer Engineering and Applications, 2023, 59(6): 171-178.
[27] 杨喆, 许甜, 靳哲, 等. 基于知识图谱的羊群疾病问答系统的构建与实现[J]. 华中农业大学学报, 2023, 42(3): 63-70.
YANG Z, XU T, JIN Z, et al. Construction and application of knowledge graph of sheep & goat disease[J]. Journal of Huazhong Agricultural University, 2023, 42(3): 63-70.
[28] 席运江, 李曼, 邓雨珊, 等. 中文在线医疗社区问答内容知识图谱构建研究[J]. 图书情报工作, 2024, 68(4): 124-136.
XI Y J, LI M, DENG Y S, et al. A knowledge graph construction for Q&A text in Chinese online medical community[J]. Library and Information Service, 2024, 68(4): 124-136.
[29] 陈明, 刘蓉, 熊回香. 基于医疗知识图谱的智能问答系统研究[J]. 情报科学, 2023, 41(12): 118-126.
CHEN M, LIU R, XIONG H X. Research on intelligent question-answering system based on the medical knowledge graph[J]. Information Science, 2023, 41(12): 118-126.
[30] BRISKILAL J, SUBALALITHA C N. An ensemble model for classifying idioms and literal texts using BERT and RoBERTa[J]. Information Processing & Management, 2022, 59(1): 102756.
[31] 孔德婧, 董放, 陈子婧, 等. 离群专利视角下的新兴技术预测——基于BERT模型和深度神经网络[J]. 图书情报工作, 2021, 65(17): 131-141.
KONG D J, DONG F, CHEN Z J, et al. Prediction of emerging technologies from the perspective of outlier patents-based on BERT model and deep neural networks[J]. Library and Information Service, 2021, 65(17): 131-141.
[32] 祁瑞华, 邵震, 关菁华, 等. 基于MPNet预训练和多头注意力特征融合的引文意图分类方法[J]. 模式识别与人工智能, 2022, 35(9): 849-857.
QI R H, SHAO Z, GUAN J H, et al. Citation intent classification method based on MPNet pretraining and multi-head attention feature fusion[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(9): 849-857.
[33] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[34] 国显达, 那日萨, 崔少泽. 基于CNN-BiLSTM的消费者网络评论情感分析[J]. 系统工程理论与实践, 2020, 40(3): 653-663.
GUO X D, ZHAO Narisa, CUI S Z. Consumer reviews sentiment analysis based on CNN-BiLSTM[J]. Systems Engineering-Theory & Practice, 2020, 40(3): 653-663.
[35] 李晋荣, 吕国英, 李茹, 等. 结合Hybrid Attention机制和BiLSTM-CRF的汉语否定语义表示及标注[J]. 计算机工程与应用, 2023, 59(9): 167-175.
LI J R, LYU G Y, LI R, et al. Chinese negative semantic representation and annotation combined with Hybrid Attention mechanism and BiLSTM-CRF[J]. Computer Engineering and Applications, 2023, 59(9): 167-175.
[36] 韦紫君, 宋玲, 胡小春, 等. 基于实体级遮蔽BERT与BiLSTM-CRF的农业命名实体识别[J]. 农业工程学报, 2022, 38(15): 195-203.
WEI Z J, SONG L, HU X C, et al. Named entity recognition of agricultural based entity-level masking BERT and BiLSTM-CRF[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 195-203.
[37] 唐晓波, 高和璇. 基于关键词词向量特征扩展的健康问句分类研究[J]. 数据分析与知识发现, 2020, 4(7): 66-75.
TANG X B, GAO H X. Classification of health questions based on vector extension of keywords[J]. Data Analysis and Knowledge Discovery, 2020, 4(7): 66-75.
[38] HU W, WU L, JIAN M, et al. Cosine metric supervised deep hashing with balanced similarity[J]. Neurocomputing, 2021, 448: 94-105.
[39] LIANG D C, WU Y Q, DUAN W Y. Multiple granularity user intention fairness recognition of intelligent government Q&A system via three-way decision[J]. Information Sciences, 2023, 631: 305-326.
[40] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388.
[41] 吴俊, 程垚, 郝瀚, 等. 基于BERT嵌入BiLSTM-CRF模型的中文专业术语抽取研究[J]. 情报学报, 2020, 39(4): 409-418.
WU J, CHENG Y, HAO H, et al. Automatic extraction of Chinese terminology based on BERT embedding and BiLSTM-CRF model[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(4): 409-418.
[42] ZHU Y, YANG X, WU Y, et al. Differentiable N-gram objective on abstractive summarization[J]. Expert Systems with Applications, 2023, 215: 119367.
[43] YAN C, LIU J, LIU W, et al. Research on public opinion sentiment classification based on attention parallel dual-channel deep learning hybrid model[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105448.
[44] ABOUTALEB A, FAYED A, ISMAIL D, et al. BERT BiLSTM-attention similarity model[C]//Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Computer Applications. Piscataway: IEEE, 2021: 366-371.
[45] 袁里驰. 基于BERT-BiLSTM-CRF的中文分词和词性标注联合方法[J]. 小型微型计算机系统, 2023, 44(9): 1906-1911.
YUAN L C. Joint method for Chinese word segmentation and part-of-speech tagging based on BERT-BiLSTM-CRF[J]. Journal of Chinese Computer Systems, 2023, 44(9): 1906-1911. |