计算机科学与探索

• 学术研究 •    下一篇

深度学习在皮肤病变图像分割中的研究综述

孟祥福,李佳讯,俞纯林,鲁蕴萱   

  1. 辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105

Research Review of Deep Learning in Skin lesions Image Segmentation

MENG Xiangfu,  LI Jiaxun, YU Chunlin,  LU Yunxuan   

  1. School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China

摘要: 皮肤病变种类繁多,临床表现复杂,涵盖从良性病变到恶性黑色素瘤等多种类型。这些病变的早期检测和准确分割对于皮肤癌的诊断和治疗至关重要,尤其是在恶性黑色素瘤等高风险病变的早期识别和定位中,能够显著提高患者的生存率。近年来,深度学习技术在皮肤病变图像分割领域取得了显著进展,极大地提高了分割的准确性和速度。本文对深度学习在皮肤病变图像分割中的研究展开综述。首先,介绍了多种皮肤病变成像方式及常用的公开数据集,并对常用的评价指标进行了归纳。然后,针对图像普遍存在的噪声和伪影问题,详细探讨了多种图像预处理和增强技术。接着,深入阐述了基于深度学习的皮肤病变分割方法,涵盖了U-Net、Transformer、SAM、Mamba以及多网络融合模型。同时,综合对比了各网络模型的主要结构设计、优势、局限性及其分割性能。最后,对该领域当前所面临的挑战和问题进行了剖析,并对未来的研究方向提出了展望,以期为皮肤病变图像分割领域的进一步发展提供参考。

关键词: 皮肤病变分割, 深度学习, 医学图像, 卷积神经网络

Abstract: Skin lesions exhibit a wide variety of types and complex clinical manifestations, ranging from benign conditions to malignant melanomas. Early detection and accurate segmentation of these lesions are critical for the diagnosis and treatment of skin cancer, particularly in the early identification and localization of high-risk lesions such as malignant melanoma, which can significantly improve patient survival rates. In recent years, deep learning techniques have achieved remarkable progress in skin lesion image segmentation, greatly enhancing both accuracy and efficiency. This paper presents a comprehensive review of deep learning research in the field of skin lesion image segmentation. First, various skin lesion imaging modalities and commonly used public datasets are introduced, along with a summary of standard evaluation metrics. Then, addressing the prevalent issues of noise and artifacts in images, a detailed discussion on various image preprocessing and augmentation techniques is provided. Subsequently, deep learning-based segmentation methods are elaborated, covering U-Net, Transformer, SAM, Mamba, and multi-network fusion models. The main architectural designs, advantages, limitations, and segmentation performance of these models are comparatively analyzed. Finally, the current challenges and issues in this field are examined, and future research directions are proposed, aiming to provide valuable insights for the continued development of skin lesion image segmentation.

Key words: skin lesions segmentation, deep learning, medical imaging, convolutional neural network