计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (10): 1721-1732.DOI: 10.3778/j.issn.1673-9418.1806053
张士昱,宋威,王晨妮,郑珊珊
ZHANG Shiyu, SONG Wei, WANG Chenni, ZHENG Shanshan
摘要: 近年来深度信念网络(DBN)得到了广泛的应用,但在现有文献中很少有关于如何动态确定其结构的详细研究。提出了一种使用动态增减枝算法的DBN模型(DDBN),可以有效地优化DBN的网络结构。DDBN可以使用动态增减枝算法而不是人工实验来自动确定其结构。首先,在训练过程中通过改变隐藏层层数和隐藏层神经元的数量,自动构建DDBN的结构,这是通过动态增减枝算法实现的。该算法依赖于隐藏层神经元的权重距离(WD)和激活概率的标准差以及整个网络的能量函数。其次,DDBN能够在动态过程中调整权重,有助于提高网络性能。最后,为了验证DDBN的有效性,将DDBN在MNIST、USPS和CIFAR-10三个基准图像数据集上进行了测试。实验结果表明,DDBN比现有的一些DBN结构调整方法具有更好的性能。