[1] Chen H S, Liu X R, Yin D W, et al. A survey on dialogue sys-tems: recent advances and new frontiers[J]. SIGKDD Exp-lorations, 2017, 19(2): 25-35.
[2] Moldovan D, Pasca M, Marabagiu S, et al. Performance iss-ues and error analysis in an open-domain question answer-ing system[J]. ACM Transactions on Information Systems, 2003, 21(2): 133-154.
[3] Liu J, Li Y L, Lin M. Review of intent detection methods in human-machine dialogue system[J]. Computer Engineering and Applications, 2019, 55(12): 1-7.刘娇,李艳玲,林民. 人机对话系统中意图识别方法综述[J]. 计算机工程与应用,2019,55(12): 1-7.
[4] Xu X L. Research on multi-label short text classification based on deep learning[D]. Guilin: Guilin University of Elec-tronic Science and Technology, 2019.徐晓璐. 基于深度学习的多标签短文本分类方法研究[D]. 桂林: 桂林电子科技大学, 2019.
[5] Liu X H, Chen W S, Zhou A, et al. Multi-label text classifi-cation based on joint model[J]. Computer Engineering and Applications, 2020, 56(14): 111-117.刘心惠, 陈文实, 周爱, 等. 基于联合模型的多标签文本分类研究[J]. 计算机工程与应用, 2020, 56(14): 111-117.
[6] Li D Y, Luo F, Wang S G. A multi-label emotion classifica-tion method for Chinese text based on CNN and tag features[J]. Journal of Shanxi University (Natural Science Edition), 2020, 43(1): 65-71.李德玉, 罗锋, 王素格. 融合 CNN 和标签特征的中文文本情绪多标签分类[J]. 山西大学学报(自然科学版), 2020, 43(1): 65-71.
[7] Mu J P, Cai J, Yu M C, et al. Label-correlation based multi-label classification algorithm with label-specific features[J/OL]. Application Research of Computers [2019-09-25]. https://doi.org/10.19734/j.issn.1001-3695.2019.04.0118.牟甲鹏, 蔡剑, 余孟池, 等. 一种基于标签相关性的类属属性多标签分类算法[J/OL]. 计算机应用研究[2019-09-25]. https://doi.org/10.19734/j.issn.1001-3695.2019.04.0118.
[8] Xu P Y, Sarikaya R. Exploiting shared information for multi-intent natural language sentence classification[C]//Proceedings of the 14th Annual Conference of the International Speech Communication Association, Lyon, Aug 25-29, 2013: 3785-3789.
[9] Kim B, Ryu S, Gary G L. Two-stage multi-intent detection for spoken language understanding[J]. Multimedia Tools and Applications, 2017, 76(9): 1-14.
[10] Ratnaparkhi A. Maximum entropy models for natural lang-uage ambiguity resolution[M]. Philadelphia: University of Pen-nsylvania, 1998.
[11] Lafferty J, Mccallum A, Pereira F C N. Conditional random fields: probabilistic models for segmenting and labeling seq-uence data[C]//Proceedings of the 18th International Con-ference on Machine Learning, Williamstown, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 282-289.
[12] Yang C N, Feng C S. Multi-intention recognition model with combination of syntactic feature and convolution neural network[J]. Journal of Computer Applications, 2018, 38(7): 1839-1845.杨春妮, 冯朝胜. 结合句法特征和卷积神经网络的多意图识别模型[J]. 计算机应用, 2018, 38(7): 1839-1845.
[13] Kim Y. Convolutional neural networks for sentence classifi-cation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1746-1751.
[14] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Proceedings of the 2017 Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 3859-3869.
[15] Hinton G E, Krizhevsky A, Wang S D. Transforming auto-encoders[C]//LNCS 6791: Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Jun 14-17, 2011. Berlin, Heidelberg: Springer, 2011: 44-51.
[16] Zhao W, Ye J B, Yang M, et al. Investigating capsule networks with dynamic routing for text classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 3110-3119.
[17] Xia C Y, Zhang C W, Yan C W, et al. Zero-shot user intent detection via capsule neural networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-guage Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 3090-3099.
[18] Renkens V, van Hamme H. Capsule networks for low resource spoken language understanding[C]//Proceedings of the 19th Annual Conference of the International Speech Communi-cation on Association, Hyderabad, Sep 2-6, 2018: 601-605.
[19] Renkens V, Janssens S, Ons B, et al. Acquisition of ordinal words using weakly supervised NMF[C]//Proceedings of the 2014 IEEE Spoken Language Technology Workshop, South Lake Tahoe, Dec 7-10, 2014. Piscataway: IEEE, 2014: 30-35.
[20] Yang J C, Han S J, Mao L, et al. Review of capsule network [J]. Journal of Shandong University (Engineering Science), 2019, 49(5): 1-8.杨巨成, 韩书杰, 毛磊, 等. 胶囊网络模型综述[J]. 山东大学学报(工学版), 2019, 49(5): 1-8.
[21] Zhu Y Z, Hu Y M, Li M. Research on capsule network technology and development trend[J]. Guangdong Communi-cation Technology, 2018, 38(10): 51-54.朱应钊, 胡颖茂, 李嫚. 胶囊网络技术及发展趋势[J]. 广东通信技术, 2018, 38(10): 51-54.
[22] Zhang W N, Chen Z G, Che W X, et al. The first evaluation of Chinese human-computer dialogue technology[J]. arXiv:1709.10217, 2017. |