[1] Zakaria A E, Moiz D, Chaker M, et al. A quantum-inspired genetic algorithm for solving the antenna positioning problem[J]. Swarm and Evolutionary Computation, 2016, 31(6): 24-63.
[2] Lin P P, Zhang J, Contreras M A. Automatically configuring ACO using multilevel ParamILS to solve transportation planning problems with underlying weighted networks[J]. Swarm and Evolutionary Computation, 2015, 20(5): 48-57.
[3] Mernik M, Liu S H, Karaboga D. On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation[J]. Information Sciences, 2015, 291(5): 115-127.
[4] Al-Roomi A R, El-Hawary M E. Metropolis biogeography-based optimization[J]. Information Sciences, 2016, 360(6): 73-95.
[5] Beheshti Z, Shamsuddin S M. Non-parametric particle swarm optimization for global optimization[J]. Applied Soft Computing, 2015, 28(5): 345-359.
[6] Chen L S, Meng X Z, Jiao J J. Biodynamics[M]. Beijing: Science Press, 2009. 陈兰荪,孟新柱,焦建军. 生物动力学[M]. 北京:科学出版社,2009.
[7] Huang G Q, Lu Q Q. Protected zone-based population migration dynamics optimization algorithm[J]. Computer Science, 2020, 47(2): 186-194. 黄光球, 陆秋琴. 保护区种群迁移动力学优化算法[J]. 计算机科学, 2020, 47(2): 186-194.
[8] Lu Q Q, Huang G Q. Predator-prey dynamics-based optimization[J]. Journal of System Simulation, 2018, 30(10): 3975-3984. 陆秋琴, 黄光球. 捕食-被食动力学优化算法[J]. 系统仿真学报, 2018, 30(10): 3975-3984.
[9] Lu Q Q, Huang G Q. Microbial dynamics optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1567-1581. 陆秋琴, 黄光球. 微生物动力学优化算法[J]. 计算机科学与探索, 2019, 13(9): 1567-1581.
[10] Lu Q Q, Huang G Q. Ecological balance dynamics- based optimization[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(10):1689-1700. 陆秋琴, 黄光球. 生态平衡动力学优化算法[J]. 计算机科学与探索, 2017, 11(10):1689-1700.
[11] Li Y Z. Population dynamics behavior with microbial control and gene mutation in polluted environment[J]. Journal of Qiannan Normal University for Nationalities, 2019, 39(4): 7-9. 李雅芝. 污染环境中具微生物治理和基因突变的种群动力学行为研究[J]. 黔南民族师范学院学报, 2019, 39(4): 7-9.
[12] Chen H, Qian L, Gu F, et al. Water eutrophication analysis and suggestion in Fengxian district of Shanghai[J]. Biotech World, 2012, 10(2): 85-86. 陈恒, 钱亮, 顾帆, 等. 上海市奉贤区河道富营养化问题的分析与对策[J]. 生物技术世界, 2012, 10(2): 85-86.
[13] Wang Y L, Zhang D M, Li C Y. Impact of nitrogen and phosphorus loss from farmland on eutrophication of water body and control measures[J]. Modern Agricultural Science and Technology, 2012(3): 305. 王艳丽, 张冬梅, 李春阳. 农田氮磷流失对水体富营养化的影响及防治对策[J]. 现代农业科技, 2012(3): 305.
[14] Wei M, You S J, Zheng G C, et al. Application analysis of aquatic biological monitoring technology[J]. Northeast Water Conservancy and Hydropower, 2012, 30(5): 35-37. 魏民, 尤世界, 郑国臣, 等. 水生生物监测技术应用分析[J]. 东北水利水电, 2012, 30(5): 35-37.
[15] Huang L,Du S,Fan L,et al. Microbial activity facilitates phosphorus adsorption to shallow lake sediment[J]. Journal of Soils and Sediments, 2011(11): 185-193.
[16] Huang G Q, Lu Q Q. Vertical structure community system optimization algorithm[J]. Computer Science, 2020, 47(4): 194-203. 黄光球, 陆秋琴. 垂直结构群落系统优化算法[J]. 计算机科学, 2020, 47(4): 194-203.
[17] Lu Q Q, Huang G Q. Population dynamics optimization algorithm with stage structure[J/OL]. Journal of System Simulation [2019-11-21]. https://doi.org/10.16182/j.issn1004731x. joss.18-0472. 陆秋琴, 黄光球. 具有阶段结构种群动力学优化算法[J/OL]. 系统仿真学报 [2019-11-21]. https://doi.org/10.16182/j.issn1004731x.joss.18-0472.
[18] Huang G Q, Lu Q Q. Plague infectious disease optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1965-1980. 黄光球, 陆秋琴. 鼠疫传染病优化算法[J]. 计算机科学与探索, 2019, 13(11): 1965-1980.
[19] Huang G Q, Lu Q Q. Horizontal structure-based competition- mutually beneficial community optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 688-702. 黄光球, 陆秋琴. 水平结构竞争-互利群落优化算法[J]. 计算机科学与探索, 2020, 14(4): 688-702.
[20] Liang J J, Qu B Y, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Singapore: Press of Nanyang Technological University, 2013.
[21] Chuang Y C, Chen C T, Hwang C. A simple and efficient real-coded genetic algorithm for constrained optimization[J]. Applied Soft Computing, 2016, 38(1): 87-105.
[22] Koro?ec P, ?ilc J, Filipic B. The differential ant-stigmergy algorithm[J]. Information Sciences, 2012, 192(6): 82-97.
[23] Souza S S, Romero F R. Artificial immune algorithm applied to distribution system reconfiguration with variable demand[J]. Electrical Power and Energy Systems, 2016, 82(5): 561-568.
[24] Zhao Z W, Yang J M, Hu Z Y, et al. A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems[J]. European Journal of Operational Research, 2016, 250(1): 30-45. |