计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (3): 482-492.DOI: 10.3778/j.issn.1673-9418.1904028
林克正,白婧轩,李昊天,李骜
LIN Kezheng, BAI Jingxuan, LI Haotian, LI Ao
摘要:
为了进一步提高人脸表情识别在小样本中的准确率,提出了一种深度学习下融合不同模型的小样本表情识别方法。该方法首先对单个卷积神经网络(CNN)模型进行比较,通过dropout层不同的节点保留概率[p,]筛选相对合适的CNN。之后采用尺度不变特征变换(SIFT)算法提取出特征,使用SIFT提取特征的目的是提高小数据的性能。为了减少误差,避免过拟合,将所有模型进行汇总,采用简单平均的模型融合方法得到CNN-SIFT-AVG模型。最后,只采用少量样本数据来训练模型即可。该模型已在FER2013、CK+和JAFFE数据集上进行了验证实验。实验结果表明,该模型可以很大程度上提高小样本表情识别的准确率,并在FER2013、CK+和JAFFE数据集上产生了较优异的结果,与其他表情识别方法相比,准确率最大提升约6%。