[1] Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical infor-mation extraction applications: a literature review[J]. Journal of Biomedical Informatics, 2018, 77: 34-49.
[2] Rindflesch T C, Fiszman M. The interaction of domain know-ledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text[J]. Journal of Biomedical Informatics, 2003, 36(6): 462-477.
[3] Mazen A, Mahmood M K, Susan S. Linked open data-based framework for automatic biomedical ontology generation[J]. BMC Bioinformatics, 2018, 19(1): 319.
[4] Miao Z H, Ma C H, Gao Z Y, et al. Hidden feature extraction for unstructured agricultural environment based on supervised kernel locally linear embedding modeling[J]. Advances in Manufacturing, 2018, 6(4): 409-418.
[5] Panyam N C, Verspoor K, Cohn T, et al. Exploiting graph kernels for high performance biomedical relation extraction[J]. Journal of Biomedical Semantics, 2018, 9(1): 7.
[6] Craven M, Kumlien J. Constructing biological knowledge bases by extracting information from text sources[C]//Pro-ceedings of the 7th International Conference on Intelligent Systems for Molecular Biology, Heidelberg, Aug 6-10, 1999. Menlo Park: AAAI, 1999: 77-86.
[7] Mintz M, Bills S, Snow R, et al. Distant supervision for rela-tion extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Singapore, Aug 2-7, 2009. Stroudsburg: ACL, 2009: 1003-1011.
[8] Pan Y, Yishabay B, Yang J, et al. Distant supervised personal relation extraction using Chinese online resource[J]. Journal of Chinese Computer Systems, 2015, 36(4): 701-706.潘云, 布勒布丽汗·伊沙巴依, 杨静, 等. 利用中文在线资源的远程监督人物关系抽取[J]. 小型微型计算机系统, 2015, 36(4): 701-706.
[9] Xue L J, Xi M L, Wang M J, et al. Entity relation extraction based on rule inference engine[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(9): 1310-1319. 薛丽娟, 席梦隆, 王梦婕, 等. 基于规则推理引擎的实体关系抽取研究[J]. 计算机科学与探索, 2016, 10(9): 1310-1319.
[10] Socher R, Huval B, Manning C D, et al. Semantic composi-tionality through recursive matrix-vector spaces[C]//Procee-dings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul 12-14, 2012. Stroudsburg: ACL, 2012: 1201-1211.
[11] Zeng D J, Liu K, Lai S W, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics, Dublin, Aug 23-29, 2014. Stroudsburg: ACL, 2014: 2335-2344.
[12] Zeng D J, Liu K, Chen Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural net-works[C]//Proceedings of the 2015 Conference on Empi-rical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1753-1762.
[13] Lin Y K, Shen S Q, Liu Z Y, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the ACL, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 2124-2133.
[14] Zhou P, Xu J, Qi Z, et al. Distant supervision for relation extraction with hierarchical selective attention[J]. Neural Networks, 2018, 108: 240-247.
[15] Ji G L, Liu K, He S Z, et al. Distant supervision for relation extraction with sentence-level attention and entity descrip-tions[C]//Proceedings of the 31st AAAI Conference on Arti-ficial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3060-3066.
[16] Che J L, Tang L W, Deng S J, et al. Distant supervision Chinese relation extraction based on dual attention mecha-nism[J]. Computer Engineering and Applications, 2019, 55(20): 107-113. 车金立, 唐力伟, 邓士杰, 等. 基于双重注意力机制的远程监督中文关系抽取[J]. 计算机工程与应用, 2019, 55(20): 107-113.
[17] Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537.
[18] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013.
[19] Liu J, Li T, Xie P, et al. Urban big data fusion based on deep learning: an overview[J]. Information Fusion, 2020, 53: 123-133.
[20] Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation[J]. arXiv:1508. 04025, 2015.
[21] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[22] Kilicoglu H, Shin D, Fiszman M, et al. SemMedDB: a PubMed-scale repository of biomedical semantic predications[J]. Bioin-formatics, 2012, 28(23): 3158-3160.
[23] Aronson A R. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program[C]//Proceedings of the American Medical Informatics Association Annual Symposium, Washington, Nov 3-7, 2001: 17-21.
[24] Kilicoglu H, Rosemblat G, Fiszman M, et al. Constructing a semantic predication gold standard from the biomedical literature[J]. BMC Bioinformatics, 2011, 12(1): 486. |