计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (6): 1417-1428.DOI: 10.3778/j.issn.1673-9418.2011057

• 图形图像 • 上一篇    下一篇

融合多特征和通道感知的目标跟踪算法

赵运基, 范存良(), 张新良   

  1. 河南理工大学 电气工程与自动化学院,河南 焦作 454003
  • 收稿日期:2020-11-20 修回日期:2021-02-05 出版日期:2022-06-01 发布日期:2021-03-08
  • 通讯作者: + E-mail: 532338283@qq.com
  • 作者简介:赵运基(1980—),男,河南南阳人,博士,讲师,主要研究方向为模式识别、智能控制。
    范存良(1995—),男,河南漯河人,硕士研究生,主要研究方向为模式识别、智能控制。
    张新良(1978—),男,山东潍坊人,博士,副教授,主要研究方向为检测技术与自动化装置。
  • 基金资助:
    国家自然科学基金(U1504506);河南省科技攻关项目(192102210073);河南省高等学校青年骨干教师培养计划(2017GGJS051);河南省高校基本科研业务费项目(NSFRF200310)

Object Tracking Algorithm with Fusion of Multi-feature and Channel Awareness

ZHAO Yunji, FAN Cunliang(), ZHANG Xinliang   

  1. College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo, Henan 454003, China
  • Received:2020-11-20 Revised:2021-02-05 Online:2022-06-01 Published:2021-03-08
  • About author:ZHAO Yunji, born in 1980, Ph.D., lecturer. His research interests include pattern recognition and intelligent control.
    FAN Cunliang, born in 1995, M.S. candidate. His research interests include pattern recognition and intelligent control.
    ZHANG Xinliang, born in 1978, Ph.D., associate professor. His research interests include detection technology and automation equipment.
  • Supported by:
    National Natural Science Foundation of China(U1504506);Key Technologies Research and Development Program of Henan Province(192102210073);Foundation for University Key Teachers from Henan Province(2017GGJS051);Fundamental Research Funds for the Universities of Henan Province(NSFRF200310)

摘要:

针对深度特征描述目标在跟踪过程中出现漂移或过拟合的问题,提出了一种融合多特征和通道感知的目标跟踪算法。应用预训练模型提取跟踪目标的深度特征,依据该特征构建相关滤波器并计算各通道对应滤波器的权重系数,根据权重系数对特征通道进行筛选;对保留的特征通过标准差计算生成统计特征并与原特征融合,采用融合后的特征构建相关滤波器并做相关运算,获取特征响应图确定目标的位置及尺度;利用跟踪结果区域的深度特征对融合特征构建的滤波器进行稀疏在线更新。所提算法和目前一些主流的跟踪算法在公共数据集OTB100、VOT2015和VOT2016上进行测试。与UDT相比,在不影响跟踪速度的同时,该算法具有更强的鲁棒性和更高的跟踪精度。实验结果表明,所提出的算法在目标尺度发生变化、快速运动和背景干扰等挑战下均表现出较强的鲁棒性。

关键词: 目标跟踪, 深度特征, 通道筛选, 特征融合, 稀疏更新

Abstract:

In order to solve the problem of drift or overfitting in the tracking process of depth feature description target, an object tracking algorithm combining multiple features and channel perception is proposed. The depth feature of the tracking target is extracted by the pre-training model, the correlation filter is built according to the feature, and the weight coefficient of each channel filter is calculated. According to the weight coefficient, the feature channel generated by the pre-training model is screened. The standard deviation of the retained features is calculated to generate statistical features and they are fused with the original features. The fused features are used to construct related filters and correlation operations are performed to obtain feature response maps to determine the location and scale of the target. Based on the depth feature of the tracking result area, the filter constructed by fusion feature is made sparse online updates. The algorithm in this paper and some current mainstream tracking algorithms are tested on the public datasets OTB100, VOT2015 and VOT2016. Compared with UDT, without affecting the tracking speed, the proposed algorithm has stronger robustness and higher tracking accuracy. The experimental results show that the proposed algorithm shows strong robustness under the challenges of target scale variation, fast motion and background clutters.

Key words: object tracking, depth feature, channel screening, feature fusion, sparse update

中图分类号: