[1] FISCON G, WEITSCHEK E, CIALINI A, et al. Combining EEG signal processing with supervised methods for Alzheimer’s patients classification[J]. BMC Medical Informatics and Decision Making, 2018, 18(1): 35.
[2] ZHOU Y, HUANG R, CHEN Z, et al. Application of approximate entropy on dynamic characteristics of epileptic absence seizure[J]. Neural Regeneration Research, 2012, 7(8): 572-577.
[3] GIGOLA S, ORTIZ F, D’ATTELLIS C E, et al. Prediction of epileptic seizures using accumulated energy in a multi-resolution framework[J]. Journal of Neuroscience Methods, 2004, 138(1): 107-111.
[4] BEHARA D S T, KUMAR A, SWAMI P, et al. Detection of epileptic seizure patterns in EEG through fragmented feature extraction[C]//Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development, New Delhi, Mar 16-18, 2016. Piscatawa: IEEE, 2016: 2539-2542.
[5] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
[6] MEI Z N, ZHAO X, CHEN H Y, et al. Bio-signal complexity analysis in epileptic seizure monitoring: a topic review[J]. Sensors, 2018, 18(6): 1720.
[7] CRALEY J, JOHNSON E, JOUNY C, et al. Automated inter-patient seizure detection using multichannel convolutional and recurrent neural networks[J]. Biomedical Signal Processing and Control, 2021, 64: 102360.
[8] YANG J, HUANG X, WU H, et al. EEG-based emotion classification based on bidirectional long short-term memory network[J]. Procedia Computer Science, 2020, 174: 491-504.
[9] 贾子钰, 林友芳, 刘天航, 等. 基于多尺度特征提取与挤压激励模型的运动想象分类方法[J]. 计算机研究与发展, 2020, 57(12): 2481-2489.
JIA Z Y, LIN Y F, LIU T H, et al. Motor imagery classification based on multiscale feature extraction and squeeze-excitation model[J]. Journal of Computer Research and Development, 2020, 57(12): 2481-2489.
[10] 金欢欢, 尹海波, 何玲娜. 基于生成少数类技术的深度自动睡眠分期模型[J]. 计算机应用, 2018, 38(9): 2483-2488.
JIN H H, YIN H B, HE L N. Deep automatic sleep staging model using synthetic minority technique[J]. Journal of Computer Applications, 2018, 38(9): 2483-2488.
[11] LEA C, VIDAL R, REITER A, et al. Temporal convolutional networks: a unified approach to action segmentation[C]//LNCS 9915: Proceedings of the 14th ECCV Workshops on Computer Vision, Amsterdam, Oct 8-10, 15-16, 2016. Cham: Springer, 2016: 47-54.
[12] MORID M A, SHENG O R L, KAWAMOTO K, et al. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: a case study of healthcare cost prediction[J]. Journal of Biomedical Informatics, 2020, 111: 103565.
[13] WANG K, LI K, ZHOU L, et al. Multiple convolutional neural networks for multivariate time series prediction[J]. Neurocomputing, 2019, 360: 107-119.
[14] YUAN Y, XUN G X, JIA K B, et al. A multi-view deep learning method for epileptic seizure detection using short-time Fourier transform[C]//Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Boston, Aug 20-23, 2017.New York: ACM, 2017: 213-222.
[15] 卫作臣, 邹俊忠, 张见, 等. 基于贝叶斯最小风险的癫痫脑电自动检测算法[J]. 计算机应用研究, 2019, 36(12): 3729-3734.
WEI Z C, ZOU J Z, ZHANG J, et al. Automatic detection of epileptic EEG based on minimum Bayesian risk and rotation forest[J]. Application Research of Computers, 2019, 36(12): 3729-3734.
[16] SUBASI A. EEG signal classification using wavelet feature extraction and a mixture of expert model[J]. Expert Systems with Applications, 2007, 32(4): 1084-1093.
[17] RAGHU S, SRIRAAM N, TEMEL Y, et al. Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier[J]. Computers in Biology and Medicine, 2019, 110: 127-143.
[18] LI P, KARMAKAR C, YEARWOOD J, et al. Detection of epileptic seizure based on entropy analysis of short-term EEG[J]. PLoS One, 2018, 13(3): e0193691.
[19] AMIN S, KAMBOH A M. A robust approach towards epileptic seizure detection[C]//Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing, Vietri sul Mare, Sep 13-16, 2016. Piscataway: IEEE, 2016: 1-6.
[20] WANG G, SUN Z, TAO R, et al. Epileptic seizure detection based on partial directed coherence analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(3): 873-879.
[21] TRUONG N D, NGUYEN A D, KUHLMANN L, et al. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram[J]. Neural Networks, 2018, 105: 104-111.
[22] ULLAH I, HUSSAIN M, QAZI E U H, et al. An automated system for epilepsy detection using EEG brain signals based on deep learning approach[J]. Expert Systems with Applications, 2018, 107: 61-71.
[23] VIDYARATNE L, GLANDON A, ALAM M, et al. Deep recurrent neural network for seizure detection[C]//Proceedings of the 2016 International Joint Conference on Neural Networks, Vancouver, Jul 24-29, 2016. Piscataway: IEEE, 2016: 1202-1207.
[24] ABBASI M U, RASHAD A, BASALAMAH A, et al. Detection of epilepsy seizures in neo-natal EEG using LSTM architecture[J]. IEEE Access, 2019, 7: 179074-179085.
[25] HU X M, YUAN S S, XU F Z, et al. Scalp EEG classification using deep Bi-LSTM network for seizure detection[J]. Computers in Biology and Medicine, 2020, 124: 103919.
[26] YAO X, LI X, YE Q, et al. A robust deep learning approach for automatic classification of seizures against non-seizures[J]. Biomedical Signal Processing and Control, 2021, 64: 102215.
[27] LI W, QI F, TANG M, et al. Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification[J]. Neurocomputing, 2020, 387: 63-77.
[28] GUO X, ZHOU H, SU J, et al. Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism[J]. Computers and Electronics in Agriculture, 2020, 179: 105830.
[29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Cambridge: MIT Press, 2017: 6000-6010.
[30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[31] YAO X, CHENG Q, ZHANG G Q. Automated classification of seizures against nonseizures: a deep learning approach[J]. arXiv:1906.02745, 2019.
[32] WEI Z, ZOU J, ZHANG J, et al. Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain[J]. Biomedical Signal Processing and Control, 2019, 53: 101551.
[33] HUANG C B, CHEN W T, CAO G T. Automatic epileptic seizure detection via attention-based CNN-BiRNN[C]//Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine, San Diego, Nov 18-21, 2019. Piscataway: IEEE, 2019: 660-663. |