[1] 张雁操, 赵宇海, 史岚. 融合图注意力的多特征链接预测算法[J]. 计算机科学与探索, 2022, 16(5): 1096-1106.
ZHANG Y C, ZHAO Y H, SHI L. Multi-feature based link prediction algorithm fusing graph attention[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106.
[2] YOU J X, YING R, LESKOVEC J. Position-aware graph neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 7134-7143.
[3] ABU-EL-HAIJA S, PEROZZI B, KAPOOR A, et al. MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing[C]//Proceedings of the 36th Inter-national Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 21-29.
[4] WU J, HE J R, XU J J. DEMO-Net: degree-specific graph neural networks for node and graph classification[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 406-415.
[5] FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 417-426.
[6] 陈洁, 刘洋, 赵姝, 等. 利用多粒度属性网络表示学习进行引文推荐[J]. 计算机科学与探索, 2021, 15(6): 1103-1113.
CHEN J, LIU Y, ZHAO S, et al. Citation recommendation via hierarchical attributed network representation learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1103-1113.
[7] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[8] YANG Z, COHEN W, SALAKHUDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//Proceedings of the 33rd International Conference on Machine Learning,New York, Jun 19-24, 2016: 40-48.
[9] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]//Proceedings of the 2nd International Conference on Learning Representa- tions, Banff, Apr 14-16, 2014: 1-14.
[10] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Pro-cessing Systems 29, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845.
[11] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[12] WU F L, SOUZA JR A H, ZHANG T Y, et al. Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6861-6871.
[13] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th Internatio-nal Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12.
[14] HAMILTON W L, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034.
[15] KLICPERA J, BOJCHEVSKI A, GüNNEMANN S, et al. Predict then propagate: graph neural networks meet personalized PageRank[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019: 1-15.
[16] XU K, LI C T, TIAN Y L, et al. Representation learning on graphs with jumping knowledge networks[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 5449-5458.
[17] CHEN M, WEI Z W, HUANG Z F, et al. Simple and deep graph convolutional networks[C]//Proceedings of the 37th International Conference on Machine Learning, Jul 13-18, 2020: 1725-1735.
[18] WANG J, DENG Z. A deep graph wavelet convolutional neural network for semi-supervised node classification[J]. arXiv:2102.09780, 2021.
[19] HU F Y, ZHU Y Q, WU S, et al. Graphair: graph representation learning with neighborhood aggregation and interaction[J]. Pattern Recognition, 2021, 112: 107745.
[20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[21] 潘承瑞, 何灵敏, 胥智杰, 等. 融合知识图谱的双线性图注意力网络推荐算法[J]. 计算机工程与应用, 2021, 57(1): 29-37.
PAN C R, HE L M, XU Z J, et al. Fusion knowledge graph and bilinear graph attention network recommendation algorithm[J]. Computer Engineering and Applications, 2021, 57(1): 29-37.
[22] XIE Y Q, LI S, YANG C, et al. When do GNNs work: understanding and improving neighborhood aggregation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 1303-1309.
[23] LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3538-3545.
[24] WESTON J, RATLE F, MOBAHI H, et al. Deep learning via semi-supervised embedding[M]//MONTAVON G, ORR G B, MüLLER K R. LNCS 7700: Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer, 2012: 639-655.
[25] GRANDVALET Y, BENGIO Y. Semi-supervised learning by entropy minimization[C]//Advances in Neural Information Processing Systems 17, Vancouver, Dec 13-18, 2004. Red Hook: Curran Associates, 2004: 529-536.
[26] BERTHELOT D, CARLINI N, GOODFELLOW I J, et al. MixMatch: a holistic approach to semi-supervised learning[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 5050-5060.
[27] 张晨光, 张燕, 张夏欢. 从希尔伯特-施密特独立性中学习的多标签半监督学习方法[J]. 中国科技论文, 2013, 8(10):998-1002.
ZHANG C G, ZHANG Y, ZHANG X H. Multi-label semi-supervised learning method learnt from Hilbert-Schmidt independence criterion[J]. China Science Paper, 2013, 8(10): 998-1002.
[28] 耿家兴. 基于希尔伯特施密特独立性验证的因果推断方法研究[D]. 衡阳: 南华大学, 2020.
GENG J X. Research on causal inference method based on Schmidt orthogonal matrix verification[D]. Hengyang: Univer-sity of South China, 2020.
[29] WANG X, ZHU M Q, BO D Y, et al. AM-GCN: adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD Conference on Knowledge Dis-covery and Data Mining. New York: ACM, 2020: 1243-1253.
[30] 孙学全, 冯英浚. 多层感知器的灵敏度分析[J]. 计算机学报, 2001, 24(9): 951-958.
SUN X Q, FENG Y J. Sensitivity analysis of multilayer perceptron[J]. Chinese Journal of Computers, 2001, 24(9): 951-958.
[31] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
[32]VAN DER MAATEN L. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |