[1] NOWELL L T. Science at extreme scale: challenges in data management, analysis, and visualization[R]. 2013-05-06.
[2] MCCORMICK B H, DEFANTI T A, BROWN M D. Visu-alization in scientific computing[J]. ACM SIGBIO Newsletter, 1988, 10(1): 15-21.
[3] AHRENS J, JOURDAIN S, O??LEARY P, et al. An image-based approach to extreme scale in Situ visualization and analysis[C]//Proceedings of the 2014 International Confe-rence for High Performance Computing, Networking, Storage and Analysis, New Orleans, Nov 16-21, 2014. Piscataway: IEEE, 2014: 424-434.
[4] ZHOU Z L, HOU Y L, WANG Q R, et al. Volume up-scaling with convolutional neural networks[C]//Proceeding of the 2017 Computer Graphics International Conference, Yokohama, Jun 27-30, 2017. New York: ACM, 2017: 38.
[5] BLU T, THéVENAZ P, UNSER M. Linear interpolation revitalized[J]. IEEE Transactions on Image Processing, 2004, 13(5): 710-719.
[6] MEIJERING E, UNSER M. A note on cubic convolution interpolation[J]. IEEE Transactions on Image Processing, 2003, 12(4): 477-479.
[7] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
[8] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//LNCS 9906:Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 391-407.
[9] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1874-1883.
[10] BERGER M, LI J X, LEVINE J A. A generative model for volume rendering[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(4): 1636-1650.
[11] WEISS S, CHU M Y, THUEREY N, et al. Volumetric isosurface rendering with deep learning-based super-resolution [J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(6): 3064-3078.
[12] HAN J, WANG C L. TSR-TVD: temporal super-resolution for time-varying data analysis and visualization[J]. IEEE Tran-sactions on Visualization and Computer Graphics, 2020, 26(1): 205-215.
[13] HAN J, WANG C. SSR-TVD: spatial super-resolution for time-varying data analysis and visualization[J]. IEEE Trans-actions on Visualization and Computer Graphics, 2022, 28(6): 2445-2456 .
[14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[15] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science in China, 2010, 4(4): 480-488.
[16] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析[J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675-686.
XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion[J]. Journal of Computer-Aided Design & Computer Graphics, 2014,26(5): 675-686.
[17] 王弘堃, 曹轶, 肖丽. 基于图像的大规模数据集交互可视化[J]. 计算机研究与发展, 2017, 54(4): 855-860.
WANG H K, CAO Y, XIAO L. Image-based interactive visualization of large-scale data sets[J]. Journal of Computer Research and Development, 2017, 54(4): 855-860.
[18] 王晓华, 曹轶, 王华维, 等. 面向效应场数值模拟的颜色映射自动调优框架[J]. 计算机辅助设计与图形学学报, 2022, 34(4): 623-635.
WANG X H, CAO Y, WANG H W, et al. A color mapping automatic tuning framework for complex simulation datasets[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(4): 623-635.
[19] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an impe-rative style, high-performance deep learning library[C]//Pro-ceedings of the Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 8024-8035. |