[1] ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
[2] ZHAO S, CAO Q, CHEN J, et al. A multi-ATL method for transfer learning across multiple domains with arbitrarily different distribution[J].Knowledge-Based Systems, 2016, 94: 60-69.
[3] GUO L, LEI Y, XING S, et al. Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7316-7325.
[4] LIU F, LU J, HAN B, et al. Butterfly: one-step approach towards wildly unsupervised domain adaptation[J]. arXiv:1905.07720, 2019.
[5] WANG Z R, DAI Z H, PóCZOS B, et al. Characterizing and avoiding negative transfer[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11293- 11302.
[6] SCOTT C. A generalized Neyman-Pearson criterion for optimal domain adaptation[C]//Proceedings of the 30th International Conference on Algorithmic Learning Theory, Chicago, Mar 22-24, 2019: 738-761.
[7] TOKUOKA Y, SUZUKI S, SUGAWARA Y. An inductive transfer learning approach using cycle-consistent adversarial domain adaptation with application to brain tumor segmentation[C]//Proceedings of the 6th International Conference on Biomedical and Bioinformatics Engineering, Shanghai, Nov 13-15, 2019. New York: ACM, 2019: 44-48.
[8] BUCCI S, D’INNOCENTE A, LIAO Y J, et al. Self-supervised learning across domains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5516-5528.
[9] MORENO-MU?OZ P, ARTéS-RODRíGUEZ A, áLVAREZ M A. Modular Gaussian processes for transfer learning[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2021, Dec 6-14, 2021: 24730-24740.
[10] FRIEDMAN J H. Greedy function approximation: a gradient Boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
[11] ZHANG X, ZHUANG Y, WANG W, et al. Transfer Boosting with synthetic instances for class imbalanced object recognition[J]. IEEE Transactions on Cybernetics, 2016, 48(1): 357-370.
[12] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
[13] CORTES C, MOHRI M, SYED U. Deep Boosting[C]// Proceedings of the 31st International Conference on Machine Learning, Beijing, Jun 21-26, 2014: 1179-1187.
[14] DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Confer-ence on Machine Learning, Corvallis, Jun 20-24, 2007. New York: ACM, 2007: 193-200.
[15] JIANG S, MAO H, DING Z, et al. Deep decision tree transfer Boosting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(2): 383-395.
[16] 周晶雨, 王士同. 对不平衡数据的多源在线迁移学习算法[J]. 计算机科学与探索, 2023, 17(3): 687-700.
ZHOU J Y, WANG S T. Multi-source online transfer learning algorithm for imbalanced data[J]. Journal of Frontiers of Com- puter Science and Technology, 2023, 17(3): 687-700.
[17] 徐光生, 王士同. 基于潜在的低秩约束的不完整模态迁移学习[J]. 计算机科学与探索, 2022, 16(12): 2775-2787.
XU G S, WANG S T. Incomplete modality transfer learning via latent low-rank constraint[J]. Journal of Frontiers of Com-puter Science and Technology, 2022, 16(12): 2775-2787.
[18] 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116.
LIN J W, WANG S T. Deep adversarial-reconstruction-classification networks for unsupervised domain adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116.
[19] KULLBACK S, LEIBLER R A. On information and suf-ficiency[J]. Annals of Mathematical Statistics, 1951, 22(1): 79-86.
[20] BARTLETT P L, MENDELSON S. Rademacher and Gaussian complexities: risk bounds and structural results[J]. Journal of Machine Learning Research, 2002, 3: 463-482.
[21] BAYRAKSAN G, LOVE D K. Data-driven stochastic programming using Phi-divergences[M]//The Operations Research Revolution: Tutorials in Operations Research, 2015: 1-19.
[22] WANG J D, CHEN Y Q, YU H, et al. Easy transfer learning by exploiting intra-domain structures[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo, Shanghai, Jul 8-12, 2019. Piscataway: IEEE, 2019: 1210-1215.
[23] AL-STOUHI S, REDDY C K. Adaptive Boosting for transfer learning using dynamic updates[C]//LNCS 6911: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Sep 4-8, 2011. Berlin, Heidelberg: Springer, 2011: 60-75. |