[1] SUN L, ZHANG J X, DING W P, et al. Feature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted K-nearest neighbors[J]. Information Sciences, 2022, 593: 591-613.
[2] 孙林, 徐枫, 李硕, 等. 基于ReliefF和最大相关最小冗余的多标记特征选择[J]. 河南师范大学学报(自然科学版), 2023, 51(6): 21-29.
SUN L, XU F, LI S, et al. Multilabel feature selection algorithm using ReliefF and mRMR[J]. Journal of Henan Normal University (Natural Science Edition), 2023, 51(6): 21-29.
[3] 徐天杰, 王平心, 杨习贝. 基于人工蜂群的三支k-means聚类算法[J]. 计算机科学, 2023, 50(6): 116-121.
XU T J, WANG P X, YANG X B. Three-way k-means clustering based on artificial bee colony[J]. Computer Science, 2023, 50(6): 116-121.
[4] REDMOND S J, HENEGHAN C. A method for initialising the K-means clustering algorithm using kd-trees[J]. Pattern Recognition Letters, 2007, 28(8): 965-973.
[5] 隋心怡, 王瑞刚, 张鸿翔. 一种改进的K-均值聚类算法[J]. 计算机与数字工程, 2018, 46(4): 682-685.
SUI X Y, WAGN R G, ZHANG H X. An improved K-means clustering algorithm[J]. Computer & Digital Engineering, 2018, 46(4): 682-685.
[6] 邵伦, 周新志, 赵成萍, 等. 基于多维网格空间的改进K-means聚类算法[J]. 计算机应用, 2018, 38(10): 2850- 2855.
SHAO L, ZHOU X Z, ZHAO C P, et al. Improved K-means clustering algorithm based on multi-dimensional grid space[J]. Journal of Computer Applications, 2018, 38(10): 2850-2855.
[7] 廖纪勇, 吴晟, 刘爱莲. 基于相异性度量选取初始聚类中心改进的K-means聚类算法[J]. 控制与决策, 2021, 36(12): 3083-3090.
LIAO J Y, WU S, LIU A L. Improved K-means clustering algorithm for selecting initial clustering centers based on dissimilarity measure[J]. Control and Decision, 2021, 36(12): 3083-3090.
[8] 黄华娟, 闵峰. 求解逆运动学的多策略蜻蜓算法[J]. 河南师范大学学报(自然科学版), 2023, 51(5): 46-58.
HUANG H J, MIN F. Multi-strategy dragonfly algorithm for solving inverse kinematics[J]. Journal of Henan Normal University (Natural Science Edition), 2023, 51(5): 46-58.
[9] 宋飞, 夏克文, 杨文彪. 融合多策略的鸟群算法及油层识别ELM模型优化[J]. 计算机工程与应用, 2022, 58(9): 279-287.
SONG F, XIA K W, YANG W B. Mix with multiple strategies bird swarm algorithm and optimization of ELM model in oil layer classification[J]. Computer Engineering and Applications, 2022, 58(9): 279-287.
[10] 许文杰, 欧宜贵. 基于神经动力系统求解广义非线性互补问题的优化方法[J]. 河南师范大学学报(自然科学版), 2022, 50(6): 87-95.
XU W J, OU Y G. An approach to general nonlinear complementarity problems based on neurodynamic system[J]. Journal of Henan Normal University (Natural Science Edition), 2022, 50(6): 87-95.
[11] 孙林, 李梦梦, 徐久成. 二进制哈里斯鹰优化及其特征选择算法[J]. 计算机科学, 2023, 50(5): 277-291.
SUN L, LI M M, XU J C. Binary Harris hawk optimization and its feature selection algorithm[J]. Computer Science, 2023, 50(5): 277-291.
[12] 刘琨, 封硕. 加强局部搜索能力的人工蜂群算法[J]. 河南师范大学学报(自然科学版), 2021, 49(2): 15-24.
LIU K, FENG S. An improved artificial bee colony algorithm for enhancing local search ability[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(2): 15-24.
[13] KARABOGA D. An idea based on honey bee swarm for numerical optimization: TR06[R]. Erciyes University, 2005.
[14] 马韦伟, 郑勤红, 刘珊珊. 基于蜂群优化的Spiking神经网络模型研究与评估[J]. 计算机科学, 2023, 50(8): 221- 225.
MA W W, ZHENG Q H, LIU S S. Study and evaluation of spiking neural network model based on bee colony optimization[J]. Computer Science, 2023, 50(8): 221-225.
[15] 叶廷宇, 叶军, 王晖, 等. 结合人工蜂群优化的粗糙K-means聚类算法[J]. 计算机科学与探索, 2022, 16(8): 1923-1932.
YE T Y, YE J, WANG H, et al. Rough K-means clustering algorithm combined with artificial bee colony optimization[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1923-1932.
[16] 胡中源, 薛羽, 查加杰. 演化循环神经网络研究综述[J]. 计算机科学, 2023, 50(3): 254-265.
HU Z Y, XUE Y, ZHA J J. Survey on evolutionary recurrent neural networks[J]. Computer Science, 2023, 50(3): 254-265.
[17] 李冰晓, 万睿之, 朱永杰, 等. 基于种群分区的多策略综合粒子群优化算法[J]. 河南师范大学学报(自然科学版), 2022, 50(3): 85-94.
LI B X, WAN R Z, ZHU Y J, et al. Multi-strategy comprehensive particle swarm optimization algorithm based on population partition[J]. Journal of Henan Normal University (Natural Science Edition), 2022, 50(3): 85-94.
[18] JANANI R, VIJAYARANI S. Text document clustering using artificial bee colony with bisecting [K-means ]algorithm[J]. International Journal of Advanced Research in Computer Science, 2018, 9(1): 619-623.
[19] JIN Q, LIN N, ZHANG Y. [K-means ] clustering algorithm based on chaotic adaptive artificial bee colony[J]. Algorithms, 2021, 14(2): 53.
[20] 曹永春, 蔡正琦, 邵亚斌. 基于[K-means ]的改进人工蜂群聚类算法[J]. 计算机应用, 2014, 34(1): 204-207.
CAO Y C, CAI Z Q, SHAO Y B. Improved artificial bee colony clustering algorithm based on [K-means[J].]Journal of Computer Applications, 2014, 34(1): 204-207.
[21] 谢娟英, 丁丽娟, 王明钊. 基于谱聚类的无监督特征选择算法[J]. 软件学报, 2020, 31(4): 1009-1024.
XIE J Y, DING L J, WANG M Z. Spectral clustering based unsupervised feature selection algorithms[J]. Journal of Software, 2020, 31(4): 1009-1024.
[22] DU Z, HAN D, LI K C. Improving the performance of feature selection and data clustering with novel global search and elite-guided artificial bee colony algorithm[J]. The Journal of Supercomputing, 2019, 75(8): 5189-5226.
[23] MOSLEHI F, HAERI A. A novel feature selection approach based on clustering algorithm[J]. Journal of Statistical Computation and Simulation, 2021, 91(3): 581-604.
[24] TANG X, DONG M, BI S, et al. Feature selection algorithm based on k-means clustering[C]//Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE, 2017: 1522- 1527.
[25] 胡敏杰, 郑荔平, 唐莉, 等. 联合谱聚类与邻域互信息的特征选择算法[J]. 模式识别与人工智能, 2017, 30(12): 1121-1129.
HU M J, ZHENG L P, TANG L, et al. Feature selection algorithm based on joint spectral clustering and neighborhood mutual information[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(12): 1121-1129.
[26] 贺思云, 高建瓴, 陈岚. 基于改进人工蜂群算法的k-means聚类算法[J]. 贵州大学学报(自然科学版), 2017, 34(5): 83-87.
HE S Y, GAO J L, CHEN L. k-means clustering algorithm based on improved artificial bee colony algorithm[J]. Journal of Guizhou University (Natural Sciences), 2017, 34(5): 83-87.
[27] 刘川川, 丁海军. 一种基于改进人工蜂群的K-means聚类算法[J]. 微处理机, 2016, 37(2): 47-50.
LIU C C, DING H J. A K-means clustering algorithm based on improved artificial bee colony[J]. Microprocessors, 2016, 37(2): 47-50.
[28] CAI D, ZHANG C, HE X. Unsupervised feature selection for multi-cluster data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, Jul 25-28, 2010. New York: ACM, 2010: 333-342.
[29] ZENG H, CHEUNG Y. Feature selection and kernel learning for local learning-based clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(8): 1532-1547.
[30] YANG Y, SHEN H T, MA Z, et al. [l2,1]-norm regularized discriminative feature selection for unsupervised[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Jul 16-22, 2011: 1589-1594.
[31] ZHAO Z, LIU H. Spectral feature selection for supervised and unsupervised learning[C]//Proceedings of the 24th International Conference on Machine Learning, Corvalis Oregon, Jun 20-24, 2007: 1151-1157.
[32] YAN X, NAZMI S, EROL B A, et al. An efficient unsu-pervised feature selection procedure through feature clustering[J]. Pattern Recognition Letters, 2020, 131: 277-284.
[33] 张宇姣, 黄锐, 张福泉, 等. 基于菌群优化的近邻传播聚类算法研究[J]. 计算机科学, 2022, 49(5): 165-169.
ZHANG Y J, HUANG R, ZHANG F Q, et al. Study on affinity propagation clustering algorithm based on bacterial flora optimization[J]. Computer Science, 2022, 49(5): 165- 169.
[34] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Aug 2-4, 1996: 226-231.
[35] ANKERST M, BREUNIG M, KRIEGEL H P, et al. Ordering points to identify the clustering structure[C]//Proceedings of the 1999 ACM SIGMOD Record, Philadelphia, Jun 1-3, 1999: 49-60.
[36] 孙林, 刘梦含, 徐久成. 基于优化初始聚类中心和轮廓系数的K-means聚类算法[J]. 模糊系统与数学, 2022, 36(1): 47-65.
SUN L, LIU M H, XU J C. K-means clustering algorithm using optimal initial clustering center and contour coefficient[J]. Fuzzy Systems and Mathematics, 2022, 36(1): 47- 65.
[37] TELLAROLI P, BAZZI M, DONATO M, et al. Cross-clustering: a partial clustering algorithm with automatic estimation of the number of clusters[J]. PLoS One, 2016, 11(3): e0152333.
[38] 傅文渊, 凌朝东. 自适应折叠混沌优化方法[J]. 西安交通大学学报, 2013, 47(2): 33-38.
FU W Y, LING C D. An adaptive iterative chaos optimization method [J]. Journal of Xi’an Jiaotong University, 2013, 47(2): 33-38.
[39] 孙林, 梁娜, 徐久成. 基于自适应邻域互信息与谱聚类的特征选择[J]. 山东大学学报(理学版), 2022, 57(12): 13-24.
SUN L, LIANG N, XU J C. Feature selection using adaptive neighborhood mutual information and spectral clustering[J]. Journal of Shandong University (Natural Science), 2022, 57(12): 13-24. |