[1] 徐颖, 杨武, 刘胜智, 等. 基于数字化系统的核电厂主控室手操器改造方案研究与实践[J]. 核动力工程, 2024, 45(2): 187-192.
XU Y, YANG W, LIU S Z, et al. Research and practice on transformation scheme of hand operator in main control room of nuclear power plant based on digital system[J]. Nuclear Power Engineering, 2024, 45(2): 187-192.
[2] WANG F, WU Y, BU Y, et al. Fault diagnosis of DCS SMPSs in nuclear power plants based on machine learning[J]. Arabian Journal for Science and Engineering, 2023: 1-20.
[3] DAI L, LU W. Operator error types in a dcs of a nuclear power plant[C]//Proceedings of the AHFE 2018 International Conference on Human Error, Reliability, Resilience, and Performance, Orlando, Jul 21-25, 2018. Cham: Springer, 2019: 223-230.
[4] PENG H, WANG Y, ZHANG X, et al. Optimization of preventive maintenance of nuclear safety-class DCS based on reliability modeling[J]. Nuclear Engineering and Technology, 2022, 54(10): 3595-3603.
[5] HE W, NIU Y, DAI S, et al. Study on the system method of DCS remote operation and maintenance system of nuclear power plant based on parallel theory[EB/OL]. [2024-03-10]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4679098.
[6] TANG C, YU C, GAO Y, et al. Deep learning in nuclear industry: a survey[J]. Big Data Mining and Analytics, 2022, 5(2): 140-160.
[7] 李源, 马新宇, 杨国利, 等. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10): 2358-2376.
LI Y, MA X Y, YANG G L, et al. Survey of causal inference for knowledge graphs and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376.
[8] ASHOK D, LIPTON Z C. PromptNER: prompting for named entity recognition[EB/OL]. [2024-03-10]. https://arxiv.org/abs/ 2305.15444.
[9] NGUYEN H L, VU D T, JUNG J J. Knowledge graph fusion for smart systems: a survey[J]. Information Fusion, 2020, 61: 56-70.
[10] LIN J, ZHAO Y, HUANG W, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33: 681-690.
[11] EHRMANN M, HAMDI A, PONTES E L, et al. Named entity recognition and classification in historical documents: a survey[J]. ACM Computing Surveys, 2023, 56(2): 1-47.
[12] JIANG X, ZHOU W, HOU J. Construction of fault diagnosis system for control rod drive mechanism based on know-ledge graph and bayesian inference[J]. Nuclear Science and Techniques, 2023, 34(2): 21.
[13] SHARMA A, AMRITA, CHAKRABORTY S, et al. Named entity recognition in natural language processing: a systema-tic review[C]//Proceedings of the 2nd Doctoral Symposium on Computational Intelligence. Singapore: Springer, 2022: 817-828.
[14] 荆鑫, 王华峰, 刘潜峰, 等. 基于ELMo-GCN的核电领域命名实体识别[J]. 北京航空航天大学学报, 2022, 48(12): 2556-2565.
JING X, WANG H F, LIU Q F, et al. Named entity recognition in nuclear power field based on ELMo-GCN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2556-2565.
[15] SHI R, WANG Z, LIU Y, et al. Improve on entity recognition method based on BiLSTM-CRF model for the nuclear technology knowledge graph[C]//Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence, Chengdu, Aug 19-21, 2022. Piscataway: IEEE, 2022: 241-246.
[16] MA Z, YAN K, WANG H. BERT-based question answering using knowledge graph embeddings in nuclear power domain[C]//Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design, Rio de Janeiro, May 24-26, 2023. Piscataway: IEEE, 2023: 267-272.
[17] LIU X, WANG H. Knowledge graph construction and decision support towards transformer fault maintenance[C]//Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design, Dalian, May 5-7, 2021.?Piscataway: IEEE, 2021: 661-666.
[18] WANG Y, CHENG Y, QI Q, et al. IDS-KG: an industrial dataspace-based knowledge graph construction approach for smart maintenance[J]. Journal of Industrial Information Integration, 2024, 38: 100566.
[19] LIU P, GUO Y, WANG F, et al. Chinese named entity recognition: the state of the art[J]. Neurocomputing, 2022, 473: 37-53.
[20] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[EB/OL]. [2024-03-10]. https://arxiv.org/abs/2303.18223.
[21] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388.
[22] 冯钧, 畅阳红, 陆佳民, 等. 基于大语言模型的水工程调度知识图谱的构建与应用[J]. 计算机科学与探索, 2024, 18(6): 1637-1647.
FENG J, CHANG Y H, LU J M, et al. Construction and application of knowledge graph for water engineering scheduling based on large language model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647.
[23] WANG S, SUN X, LI X, et al. GPT-NER: named entity recognition via large language models[EB/OL]. [2024-03-10].https://arxiv.org/abs/2304.10428.
[24] WEBSON A, PAVLICK E. Do prompt-based models really understand the meaning of their prompts?[EB/OL]. [2024-03-10]. https://arxiv.org/abs/2109.01247.
[25] CHEN J, LU G, PAN Z, et al. Research review of the knowledge graph and its application in power system dispatching and operation[J]. Frontiers in Energy Research, 2022, 10: 896836.
[26] JALILIFARD A, CARIDá V F, MANSANO A F, et al. Semantic sensitive TF-IDF to determine word relevance in documents[C]//Advances in Computing and Network Communications. Singapore: Springer, 2021: 327-337.
[27] MASWADI K, GHANI N A, HAMID S, et al. Human activity classification using decision tree and naive Bayes classifiers[J]. Multimedia Tools and Applications, 2021, 80(14): 21709-21726.
[28] STROBELT H, WEBSON A, SANH V, et al. Interactive and visual prompt engineering for ad-hoc task adaptation with large language models[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 29(1): 1146-1156.
[29] WANG Y, SHEN S, LIM B Y. RePrompt: automatic prompt editing to refine AI-generative art towards precise expressions[C]//Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Apr 23-28, 2023. New York: ACM, 2023: 1-29.
[30] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
[31] REGéCIOVá D, KOLá? D, MILKOVI? M. Pattern matching in YARA: improved Aho-Corasick algorithm[J]. IEEE Access, 2021, 9: 62857-62866. |