[1] SUTTON-SPENCE R, WOLL B. The linguistics of British sign language: an introduction[M]. Cambridge: Cambridge University Press, 1999.
[2] 闫思伊, 薛万利, 袁甜甜. 手语识别与翻译综述[J]. 计算机科学与探索, 2022, 16(11): 2415-2429.
YAN S Y, XUE W L, YUAN T T. Survey of sign language recognition and translation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2415-2429.
[3] BRAGG D, KOLLER O, BELLARD M, et al. Sign language recognition, generation, and translation: an interdisciplinary perspective[C]//Proceedings of the 2019 ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, Oct 28-30, 2019. New York: ACM, 2019: 16-31.
[4] RASTGOO R, KIANI K, ESCALERA S. Sign language recog-nition: a deep survey[J]. Expert Systems with Applications, 2021, 164: 113794.
[5] KOLLER O, FORSTER J, NEY H. Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers[J]. Computer Vision and Image Understanding, 2015, 141: 108-125.
[6] HUANG J, ZHOU W G, ZHANG Q L, et al. Video-based sign language recognition without temporal segmentation[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2257-2264.
[7] CUI R P, LIU H, ZHANG C S. A deep neural framework for continuous sign language recognition by iterative training[J]. IEEE Transactions on Multimedia, 2019, 21(7): 1880-1891.
[8] LI D X, XU C C, YU X, et al. TSPNet: hierarchical feature learning via temporal semantic pyramid for sign language translation[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 12034-12045.
[9] XIE P, CUI Z, DU Y, et al. Multi-scale local-temporal similarity fusion for continuous sign language recognition[J]. Pattern Recognition, 2023, 136: 109233.
[10] WANG L M, TONG Z, JI B, et al. TDN: temporal difference networks for efficient action recognition[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 1895-1904.
[11] LI S J, ABUFARHA Y, LIU Y, et al. MS-TCN++: multi-stage temporal convolutional network for action segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 6647-6658.
[12] 黄菲菲, 曹江涛, 姬晓飞, 等. 多特征的双人交互动作识别算法研究[J]. 计算机科学与探索, 2017, 11(2): 294-302.
HUANG F F, CAO J T, JI X F, et al. Research on human interaction recognition algorithm based on mixed features[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2): 294-302.
[13] PU J F, ZHOU W G, LI H Q. Iterative alignment network for continuous sign language recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4165-4174.
[14] PU J F, ZHOU W G, HU H Z, et al. Boosting continuous sign language recognition via cross modality augmentation[C]//Proceedings of the 2020 ACM International Conference on Multimedia, Oct 12-16, 2020. New York: ACM, 2020: 1497-1505.
[15] PU J F, ZHOU W G, LI H Q. Dilated convolutional network with iterative optimization for continuous sign language recognition[C]//Proceedings of the 2018 International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 885-891.
[16] NIU Z, MAK B. Stochastic fine-grained labeling of multi-state sign glosses for continuous sign language recognition[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 172-186.
[17] CAMGOZ N C, KOLLER O, HADFIELD S, et al. Sign language transformers: joint end-to-end sign language recognition and translation[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Washington: IEEE Computer Society, 2020: 10020-10030.
[18] CAMGOZ N C, HADFIELD S, KOLLER O, et al. Neural sign language translation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7784-7793.
[19] ZHOU H, ZHOU W G, QI W Z, et al. Improving sign language translation with monolingual data by sign back-translation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 1316-1325.
[20] GRAVES A, FERNANDEZ S, GOMEZ F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 2006 International Conference on Machine Learning, Pittsburgh, Jun 25-29, 2006: 369-376.
[21] CUTURI M, BLONDEL M. SOFT-DTW: a differentiable loss function for time-series[C]//Proceedings of the 2017 International Conference on Machine Learning, Sydney, Aug 11-15, 2017: 894-903.
[22] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[23] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 2016 International Conference on Learning Representations, San Juan, May 2-4, 2016.
[24] MIN Y C, HAO A M, CHAI X L, et al. Visual alignment constraint for continuous sign language recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 11542-11551.
[25] HAO A M, MIN Y C, CHEN X L. Self-mutual distillation learning for continuous sign language recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 11303-11312.
[26] KOLLER O, CAMGOZ N C, NEY H, et al. Weakly supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(9): 2306-2320. |