计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (11): 2969-2979.DOI: 10.3778/j.issn.1673-9418.2312020

• 理论·算法 • 上一篇    下一篇

融合模糊聚类和自适应去噪的推荐遗忘学习算法

王建芳,柴广文,陈艺卿,梁梦豪,罗军伟   

  1. 1. 河南理工大学 计算机科学与技术学院,河南 焦作 454003
    2. 河南理工大学 软件学院,河南 焦作 454000
  • 出版日期:2024-11-01 发布日期:2024-10-31

Recommendation Unlearning Algorithm Combining Fuzzy Clustering and Adaptive Denoising

WANG Jianfang, CHAI Guangwen, CHEN Yiqing, LIANG Menghao, LUO Junwei   

  1. 1. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454003, China
    2. School of Software, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Online:2024-11-01 Published:2024-10-31

摘要: 隐私保护在推荐系统中具有至关重要的地位,因为它有助于保护用户的敏感信息免受泄露风险。近年来,推荐遗忘学习作为一种有效的隐私保护手段引起了越来越多的关注。现有方法为了提高模型的训练效率,通常将数据划分为子分区进行训练。然而,简单划分子分区会破坏用户-项目间的完整性,降低数据的可用性。此外,子分区中隐式反馈的假阳性噪声会干扰模型的训练,使其无法准确地捕捉用户的真实偏好。为解决上述问题,提出了融合模糊聚类和自适应去噪的推荐遗忘学习算法(FDRU)。该算法使用模糊聚类来划分数据集,通过计算交互样本到各个聚类中心的余弦距离来确定隶属度,进而将训练集划分为若干个子分区。FDRU设计了一种自适应去噪方法,其能够根据阈值动态地剔除子分区中的假阳性噪声。通过动态权重聚合子模型进行预测和Top-N推荐。为了验证提出算法的性能,在三个公开数据集上进行实验验证,实验结果表明,提出的算法在召回率和归一化折损累计增益上优于其他基准算法。

关键词: 隐私保护, 推荐, 遗忘学习, 模糊聚类, 自适应去噪

Abstract: Privacy protection plays a crucial role in recommender systems as it helps to protect users’ sensitive information from disclosure risks. Recent recommendation unlearning has attracted increasing attention as an effective method of privacy protection. Existing methods often partition data into sub-partitions before training to enhance model training efficiency. However, simply partitioning interactions into sub-partitions can disrupt the integrity of user-item relationships and reduce the availability of data. In addition, the presence of false-positive noise in sub-partitions with implicit feedback can interfere with model training, preventing it from accurately capturing users’ true preferences. To address these challenges, a recommendation unlearning algorithm combining fuzzy clustering and adaptive denoising (FDRU) is proposed. Firstly, fuzzy clustering determines membership by calculating cosine distances between samples and various cluster centers, subsequently dividing the training dataset into several sub-partitions. Then, FDRU designs an adaptive denoising algorithm that dynamically eliminates false positive noise in sub-partitions based on thresholds. Finally, it utilizes dynamic weighted aggregation of sub-models for prediction and top-N recommendations. In order to assess the performance of the proposed algorithm, extensive experiments are carried out on three public datasets. Experimental results indicate that FDRU outperforms other benchmark algorithms on Recall and NDCG.

Key words: privacy protection, recommendation, unlearning, fuzzy clustering, adaptive denoising