[1] WENG J, WENG C, YUAN J. Spatio-temporal naive-Bayes nearest-neighbor (ST-NBNN) for skeleton-based action recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4171-4180.
[2] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7444-7452.
[3] 邓淼磊, 高振东, 李磊, 等. 基于深度学习的人体行为识别综述[J]. 计算机工程与应用, 2022, 58(13): 14-26.
DENG M L, GAO Z D, LI L, et al. Overview of human behavior recognition based on deep learning[J]. Computer Engineering and Applications, 2022, 58(13): 14-26.
[4] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177.
[5] GAN J, WANG W. In air handwritten English word recognition using attention recurrent translator[J]. Neural Computing and Applications, 2019, 31(7): 3155-3172.
[6] HAGBI N, BERGIG O, BILLINGHURST M, et al. Shape recognition and pose estimation for mobile augmented reality[J]. Proceedings of the IEEE, 2011, 17(10): 1369-1379.
[7] HASSANIN M, KHAN S, TAHTALI M. Visual affordance and function understanding: a survey[J]. ACM Computing Surveys, 2021, 54(3): 1-35.
[8] GARCIA-SALGUERO M, GONZALEZ-JIMENEZ J, MORENO F A. Human 3D pose estimation with a tilting camera for social mobile robot interaction[J]. Sensors, 2019, 19(22): 4943.
[9] GUI L Y, ZHANG K, WANG Y X, et al. Teaching robots to predict human motion[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Oct 1-5, 2018. Piscataway: IEEE, 2018: 562-567.
[10] AGARWAL A, TRIGGS B. Recovering 3D human pose from monocular images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 28(1): 44-58.
[11] IONESCU C, LI F, SMINCHISESCU C. Latent structured models for human pose estimation[C]//Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Nov 6-13, 2011.Washington: IEEE Computer Society, 2011: 2220-2227.
[12] ROGEZ G, RIHAN J, RAMALINGAM S, et al. Randomized trees for human pose detection[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[13] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1106-1114.
[15] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[16] TEKIN B, KATIRCIOGLU I, SALZMANN M, et al. Structured prediction of 3D human pose with deep neural net-works[C]//Proceedings of the British Machine Vision Conference 2016, York, Sep 19-22, 2016: 1-11.
[17] PAVLAKOS G, ZHOU X, DERPANIS K G, et al. Coarse-to-fine volumetric prediction for single-image 3D human pose[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7025-7034.
[18] SUN X, SHANG J, LIANG S, et al. Compositional human pose regression[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2602-2611.
[19] SUN X, XIAO B, WEI F, et al. Integral human pose regression[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 529-545.
[20] YANG W, OUYANG W, WANG X, et al. 3D human pose estimation in the wild by adversarial learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5255-5264.
[21] ZHOU X, HUANG Q, SUN X, et al. Towards 3D human pose estimation in the wild: a weakly-supervised approach[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington:IEEE Computer Society, 2017: 398-407.
[22] MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3D human pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2640-2649.
[23] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 2017 International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[24] FANG H S, XU Y, WANG W, et al. Learning pose grammar to encode human body configuration for 3D pose estimation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6821-6828.
[25] PAVLAKOS G, ZHOU X, DANIILIDIS K. Ordinal depth supervision for 3D human pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7307-7316.
[26] SHARMA S, VARIGONDA P T, BINDAL P, et al. Monocular 3D human pose estimation by generation and ordinal ranking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2325-2334.
[27] ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3D human pose regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3425-3435.
[28] ZOU Z, LIU K, WANG L, et al. High-order graph convolutional networks for 3D human pose estimation[C]//Procee-dings of the 31st British Machine Vision Conference, Sep 7-10, 2020: 1-13.
[29] XU Y, WANG W, LIU T, et al. Monocular 3D pose estimation via pose grammar and data augmentation[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6327-6344.
[30] BANIK S, GARCíA A M, KNOLL A. 3D human pose regression using graph convolutional network[C]//Proceedings of the 2021 IEEE International Conference on Image Processing, Anchorage, Sep 19-22, 2021. Piscataway: IEEE, 2021: 924-928.
[31] QUAN J, HAMZA A B. Higher-order implicit fairing net-works for 3D human pose estimation[C]//Proceedings of the 32nd British Machine Vision Conference, Nov 22-25, 2021: 352.
[32] LI Q, HAN Z, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3538-3545.
[33] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[34] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[35] ABU-EL-HAIJA S, PEROZZI B, KAPOOR A, et al. MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 21-29.
[36] LIU K, ZOU Z, TANG W. Learning global pose features in graph convolutional networks for 3D human pose estimation[C]//Proceedings of the 2020 Asian Conference on Computer Vision, Kyoto, Nov 30-Dec 4, 2020. Cham: Spr-inger, 2020: 89-105.
[37] ZHAO W, TIAN Y, YE Q, et al. GraFormer: graph convolution transformer for 3D pose estimation[J]. arXiv:2109.08364, 2021.
[38] 邓辉, 徐杨. 融入注意力和密集连接的轻量型人体姿态估计[J]. 计算机工程与应用, 2022, 58(16): 265-273.
DENG H, XU Y. Lightweight human pose estimation based on attention and dense connection[J]. Computer Engineering and Applications, 2022, 58(16): 265-273.
[39] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 2015 International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[40] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning, Haifa, Jun 21-24, 2010. Madison: Omnipress, 2010: 807-814.
[41] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1325-1339.
[42] MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]//Proceedings of the 2017 International Conference on 3D Vision, Qingdao, Oct 10-12, 2017. Piscataway: IEEE, 2017: 506-516.
[43] KINGMA D, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 2015 International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-15.
[44] CI H, WANG C, MA X, et al. Optimizing network structure for 3D human pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2262-2271.
[45] LI C, LEE G H. Generating multiple hypotheses for 3D human pose estimation with mixture density network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9887-9895.
[46] AZIZI N, POSSEGGER H, RODOLà E, et al. 3D human pose estimation using M?bius graph convolutional networks[C]//Proceedings of the 17th European Conference on Com-puter Vision, Tel Aviv, Oct 23-27, 2022. Cham: Springer, 2022: 160-178.
[47] LUO C, CHU X, YUILLE A. OriNet: a fully convolutional network for 3D human pose estimation[C]//Proceedings of the British Machine Vision Conference 2018, Newcastle, Sep 3-6, 2018: 92.
[48] ZENG A, SUN X, HUANG F, et al. SRNet: improving generalization in 3D human pose estimation with a split-and-recombine approach[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 507-523.
[49] WANG J, HUANG S, WANG X, et al. PONet: robust 3D human pose estimation via learning orientations only[J]. arXiv:2112.11153, 2021.
[50] WANDT B, RUDOLPH M, ZELL P, et al. Canonpose: self-supervised monocular 3D human pose estimation in the wild[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 13294-13304.
[51] ROY S K, CITRARO L, HONARI S, et al. On triangulation as a form of self-supervision for 3D human pose estimation[C]//Proceedings of the 10th International Conference on 3D Vision 2022, Prague, Sep 12-16, 2022. Piscataway: IEEE, 2022: 1-10. |