[1] PARDO A, JOVANOVIC J, DAWSON S, et al. Using learning analytics to scale the provision of personalised feedback[J]. British Journal of Educational Technology, 2019, 50(1): 128-138.
[2] PIROLLI P, KAIRAM S. A knowledge-tracing model of lear-ning from a social tagging system[J]. User Modeling and User-Adapted Interaction, 2013, 23(2): 139-168.
[3] NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network[C]//Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence. New York: ACM, 2019: 156-163.
[4] TONG S W, LIU Q, HUANG W, et al. Structure-based know-ledge tracing: an influence propagation view[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 541-550.
[5] DUAN Z Y, DONG X X, GU H N, et al. Towards more accurate and interpretable model: fusing multiple knowledge relations into deep knowledge tracing[J]. Expert Systems with Applications, 2024, 243: 122573.
[6] NI Q, WEI T J, ZHAO J B, et al. HHSKT: a learner-question interactions based heterogeneous graph neural network model for knowledge tracing[J]. Expert Systems with Applications, 2023, 215: 119334.
[7] WINSTANLEY M A. Stages in theory and experiment. Fuzzy-structuralism and Piagetian stages[J]. Integrative Psycholo-gical and Behavioral Science, 2023, 57(1): 151-173.
[8] EBBINGHAUS H. Memory: a contribution to experimental psychology[J]. Annals of Neurosciences, 2014, 20(4).
[9] WEERAKODY P B, WONG K W, WANG G J, et al. A review of irregular time series data handling with gated recurrent neural networks[J]. Neurocomputing, 2021, 441: 161-178.
[10] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3101-3107.
[11] SHEN S H, LIU Q, CHEN E H, et al. Learning process-consistent knowledge tracing[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1452-1460.
[12] ABDELRAHMAN G, WANG Q. Deep graph memory networks for forgetting-robust knowledge tracing[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7844-7855.
[13] XU B H, HUANG Z Y, LIU J Y, et al. Learning behavior-oriented knowledge tracing[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2789-2800.
[14] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5363-5370.
[15] CHE Z P, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8: 6085.
[16] CHEN P H, LU Y, ZHENG V W, et al. Prerequisite-driven deep knowledge tracing[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 39-48.
[17] GAN W B, SUN Y, SUN Y. Knowledge structure enhanced graph representation learning model for attentive knowledge tracing[J]. International Journal of Intelligent Systems, 2022, 37(3): 2012-2045.
[18] LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings[EB/OL]. [2024-10-21]. https://arxiv.org/abs/2012.05031.
[19] XU J, HUANG X Y, XIAO T, et al. Improving knowledge tracing via a heterogeneous information network enhanced by student interactions[J]. Expert Systems with Applications, 2023, 232: 120853.
[20] HE Z Y, LI W, YAN Y H. Modeling knowledge proficiency using multi-hierarchical capsule graph neural network[J]. Applied Intelligence, 2022, 52(7): 7230-7247.
[21] YANG H L, HU S Z, GENG J, et al. Heterogeneous graph-based knowledge tracing with spatiotemporal evolution[J]. Expert Systems with Applications, 2024, 238: 122249.
[22] CHENG K, PENG L Z, WANG P Y, et al. DyGKT: dynamic graph learning for knowledge tracing[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 409-420.
[23] CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-278.
[24] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//Advances in Neural Information Processing Systems 28, 2015: 505-513.
[25] ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 765-774.
[26] GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339.
[27] WEI L T, LI B, LI Y, et al. Time interval aware self-attention approach for knowledge tracing[J]. Computers and Electrical Engineering, 2022, 102: 108179.
[28] ZHAO W Z, XIA J, JIANG X P, et al. A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms[J]. Information Processing & Mana-gement, 2023, 60(1): 103114.
[29] HE L L, TANG J T, LI X, et al. Multi-type factors representation learning for deep learning-based knowledge tracing[J]. World Wide Web, 2022, 25(3): 1343-1372.
[30] HUANG T, YANG H L, LI Z, et al. A dynamic knowledge diagnosis approach integrating cognitive features[J]. IEEE Access, 2021, 9: 116814-116829.
[31] HUANG C Q, WEI H J, HUANG Q H, et al. Learning consistent representations with temporal and causal enhancement for knowledge tracing[J]. Expert Systems with Applications, 2024, 245: 123128.
[32] AUSUBEL D G. Cognitive structure and the facilitation of meaningful verbal learning[J]. Journal of Teacher Education, 1963, 14(2): 217-222.
[33] LIU S, LI Q, SHEN X X, et al. Automated discovery of symbolic laws governing skill acquisition from naturally occurring data[J]. Nature Computational Science, 2024, 4(5): 334-345.
[34] LONG T, LIU Y, ZHANG W, et al. Automatical graph-based knowledge tracing[C]//Proceedings of the 15th International Conference on Educational Data Mining, 2022.
[35] WO?NIAK P A, GORZELA?CZYK E J, MURAKOWSKI J A. Two components of long-term memory[J]. Acta Neurobiologiae Experimentalis, 1995, 55(4): 301-305.
[36] 许智宏, 张惠斌, 董永峰, 等. 问题特征增强的知识追踪模型[J]. 计算机科学与探索, 2024, 18(9): 2466-2475.
XU Z H, ZHANG H B, DONG Y F, et al. Question feature enhanced knowledge tracing model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2466-2475.
[37] WANG C Y, MA W Z, ZHANG M, et al. Temporal cross-effects in knowledge tracing[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 517-525.
[38] CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]//Proceedings of the 7th ACM Conference on Learning@Scale. New York: ACM, 2020: 341-344.
[39] LEE W, CHUN J, LEE Y, et al. Contrastive learning for knowledge tracing[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2330-2338.
[40] 吴水秀, 罗贤增, 熊键, 等. 知识追踪研究综述[J]. 计算机科学与探索, 2023, 17(7): 1506-1525.
WU S X, LUO X Z, XIONG J, et al. Review on research of knowledge tracking[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525.
[41] CUI J J, CHEN Z Y, ZHOU A M, et al. Fine-grained interaction modeling with multi-relational transformer for know-ledge tracing[J]. ACM Transactions on Information Systems, 2023, 41(4): 1-26.
[42] WU Z Y, HUANG L, HUANG Q H, et al. SGKT: session graph-based knowledge tracing for student performance prediction[J]. Expert Systems with Applications, 2022, 206: 117681.
[43] SHEN S H, CHEN E H, LIU Q, et al. Monitoring student progress for learning process-consistent knowledge tracing[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8213-8227.
[44] YIN Y, DAI L, HUANG Z Y, et al. Tracing knowledge instead of patterns: stable knowledge tracing with diagnostic transformer[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 855-864.
[45] MA H, YANG Y, QIN C, et al. HD-KT: advancing robust knowledge tracing via anomalous learning interaction detection[C]//Proceedings of the ACM Web Conference 2024.New York: ACM, 2024: 4479-4488. |