
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (11): 2935-2949.DOI: 10.3778/j.issn.1673-9418.2412031
刘艳艳,董彦如,张凯,王晓燕,王旭
出版日期:2025-11-01
发布日期:2025-10-30
LIU Yanyan, DONG Yanru, ZHANG Kai, WANG Xiaoyan, WANG Xu
Online:2025-11-01
Published:2025-10-30
摘要: 视网膜血管分割研究旨在促进眼底疾病的早期诊断及病变分析,为医生评估患者眼部健康状况提供重要依据。深度学习技术的迅猛发展为视网膜血管图像分割带来了新方法和分割性能的新突破,U-Net以出色的性能表现成为该领域的主流分割模型。详细整理了近年来U-Net及其改进模型在视网膜血管分割领域的应用进展,在介绍视网膜血管分割常用数据集与评价指标的基础上,概述U-Net模型及其主要结构改进策略。将U-Net变体划分为单网络模型与多网络模型,并从单网络模型中的注意力机制、残差结构、多尺度特征模块、卷积模块,以及多网络模型中的级联U-Net、双路径U-Net、生成对抗网络的融合、Transformer与Mamba模型的融入等角度对U-Net模型及其变体的改进进行了详细梳理,归纳对比分析了各研究在模型结构、特征提取、性能优化等方面的改进与缺陷,以及在公开数据集上的实验结果,并讨论了该领域目前存在的挑战与未来展望。
刘艳艳, 董彦如, 张凯, 王晓燕, 王旭. U-Net及其变体在视网膜血管自动分割中的应用研究[J]. 计算机科学与探索, 2025, 19(11): 2935-2949.
LIU Yanyan, DONG Yanru, ZHANG Kai, WANG Xiaoyan, WANG Xu. Research on Application of U-Net and Its Variants in Automatic Segmentation of Retinal Vessels[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 2935-2949.
| [1] VOSTATEK P, CLARIDGE E, UUSITALO H, et al. Performance comparison of publicly available retinal blood vessel segmentation methods[J]. Computerized Medical Imaging and Graphics, 2017, 55: 2-12. [2] LI T, BO W, HU C Y, et al. Applications of deep learning in fundus images: a review[J]. Medical Image Analysis, 2021, 69: 101971. [3] WANG C L, ODA M, HAYASHI Y, et al. Tensor-cut: a tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation[J]. Medical Image Analysis, 2020, 60: 101623. [4] 梁礼明, 余洁, 周珑颂, 等. 多尺度密集注意力网络用于视网膜血管分割[J]. 激光与光电子学进展, 2023, 60(6): 122-131. LIANG L M, YU J, ZHOU L S, et al. Multiscale dense attention network for retinal vessel segmentation[J]. Laser & Optoelectronics Progress, 2023, 60(6): 122-131. [5] KHANDOUZI A, ARIAFAR A, MASHAYEKHPOUR Z, et al. Retinal vessel segmentation, a review of classic and deep methods[J]. Annals of Biomedical Engineering, 2022, 50(10): 1292-1314. [6] SUN J D, PENG Y J, GUO Y F, et al. Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN[J]. Neurocomputing, 2021, 423: 34-45. [7] 汪有崧, 裴峻鹏, 李增辉, 等. 深度学习的视网膜血管分割研究综述[J]. 计算机科学与探索, 2024, 18(8): 1960-1978. WANG Y S, PEI J P, LI Z H, et al. Review of research on deep learning in retinal blood vessel segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. [8] STAAL J, ABRàMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. [9] SOARES J V B, LEANDRO J J G, CESAR J R M, et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222. [10] OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004-2010. [11] JIN K, HUANG X R, ZHOU J X, et al. FIVES: a fundus image dataset for artificial intelligence based vessel segmentation[J]. Scientific Data, 2022, 9: 475. [12] FARNELL D J J, HATFIELD F N, KNOX P, et al. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators[J]. Journal of the Franklin Institute, 2008, 345(7): 748-765. [13] BUDAI A, BOCK R, MAIER A, et al. Robust vessel segmentation in fundus images[J]. International Journal of Biomedical Imaging, 2013, 2013(1): 154860. [14] ZHANG J, DASHTBOZORG B, BEKKERS E, et al. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores[J]. IEEE Transactions on Medical Imaging, 2016, 35(12): 2631-2644. [15] PAN X Q, ZHANG Q R, ZHANG H, et al. A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model[J]. IEEE Access, 2019, 7: 122634-122643. [16] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [17] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [19] ZHAI Z L, FENG S, YAO L Y, et al. Retinal vessel image segmentation algorithm based on encoder-decoder structure[J]. Multimedia Tools and Applications, 2022, 81(23): 33361-33373. [20] XU W J, CHEN H Y, WU R H, et al. CM-Unet: a convolutional neural network for retinal vessel segmentation[C]//Proceedings of the 2023 IEEE Smart World Congress. Piscataway: IEEE, 2023: 1-5. [21] XIANG Z J, NING C Y, LI M Y, et al. AFFD-Net: a dual-decoder network based on attention-enhancing and feature fusion for retinal vessel segmentation[J]. IEEE Access, 2023, 11: 45871-45887. [22] ZHANG Y, FANG J, CHEN Y, et al. Edge-aware U-Net with gated convolution for retinal vessel segmentation[J]. Biomedical Signal Processing and Control, 2022, 73: 103472. [23] TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation[C]//Procee-dings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5228-5237. [24] HATAMIZADEH A, TERZOPOULOS D, MYRONENKO A. Edge-gated CNNs for volumetric semantic segmentation of medical images[EB/OL]. [2024-11-10]. https://arxiv.org/abs/2002.04207. [25] NI J J, MU W, PAN A, et al. FSE-Net: rethinking the up-sampling operation in encoder-decoder structure for retinal vessel segmentation[J]. Biomedical Signal Processing and Control, 2024, 90: 105861. [26] WANG S B, CHEN Y Y, YI Z. A multi-scale attention fusion network for retinal vessel segmentation[J]. Applied Sciences, 2024, 14(7): 2955. [27] OUYANG J H, LIU S G, PENG H, et al. LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation[J]. Complex & Intelligent Systems, 2023, 9(6): 6753-6766. [28] LI D Y, PENG L X, PENG S H, et al. Retinal vessel segmentation by using AFNet[J]. The Visual Computer, 2023, 39(5): 1929-1941. [29] LIU Y H, SHEN J, YANG L, et al. ResDO-UNet: a deep residual network for accurate retinal vessel segmentation from fundus images[J]. Biomedical Signal Processing and Control, 2023, 79: 104087. [30] GUO C L, SZEMENYEI M, HU Y T, et al. Channel attention residual U-Net for retinal vessel segmentation[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 1185-1189. [31] LIU Y H, SHEN J, YANG L, et al. Wave-Net: a lightweight deep network for retinal vessel segmentation from fundus images[J]. Computers in Biology and Medicine, 2023, 152: 106341. [32] CHEN H Y, KIM K. Multi-convolutional channel residual spatial attention U-Net for industrial and medical image segmentation[J]. IEEE Access, 2024, 12: 76089-76101. [33] JAVED S, KHAN T M, QAYYUM A, et al. Region guided attention network for retinal vessel segmentaion[EB/OL]. [2024-11-12]. https://arxiv.org/abs/2407.18970. [34] LI X, JIANG Y C, LI M L, et al. Lightweight attention convolutional neural network for retinal vessel image segmentation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1958-1967. [35] 刘娜, 汪国强. SAF-Net: 自注意力融合网络的视网膜血管分割[J]. 计算机工程与应用, 2023, 59(14): 217-223. LIU N, WANG G Q. SAF-Net: self attention fusion network for retinal vessel segmentation[J]. Computer Engineering and Applications, 2023, 59(14): 217-223. [36] GAO Z Q, ZHOU L L, DING W P, et al. A retinal vessel segmentation network approach based on rough sets and attention fusion module[J]. Information Sciences, 2024, 678: 121015. [37] ZHANG H B, ZHONG X, LI Z J, et al. TiM-Net: transformer in M-Net for retinal vessel segmentation[J]. Journal of Healthcare Engineering, 2022, 2022(1): 9016401. [38] DEARI S, OKSUZ I, ULUKAYA S. Block attention and switchable normalization based deep learning framework for segmentation of retinal vessels[J]. IEEE Access, 2023, 11: 38263-38274. [39] PANCHAL S, KOKARE M. ResMU-Net: residual multi-kernel U-Net for blood vessel segmentation in retinal fundus images[J]. Biomedical Signal Processing and Control, 2024, 90: 105859. [40] 吴佶蔚, 宣士斌. 基于残差与小波U-Net的视网膜图像分割[J]. 计算机系统应用, 2024, 33(6): 99-107. WU J W, XUAN S B. U-Net based on residual and wavelet for retinal image segmentation[J]. Computer Systems and Applications, 2024, 33(6): 99-107. [41] ZHU C H, NIU X W, ZUO L, et al. Fused residual attention dense double-U network retinal vessel segmentation algorithm[C]//Proceedings of the 2023 International Conference on Intelligent Supercomputing and BioPharma. Piscataway: IEEE, 2023: 109-115. [42] WANG H D, XU G, PAN X P, et al. Attention-inception-based U-Net for retinal vessel segmentation with advanced residual[J]. Computers & Electrical Engineering, 2022, 98: 107670. [43] KANDE G B, RAVI L, KANDE N, et al. MSR U-Net: an improved U-Net model for retinal blood vessel segmentation[J]. IEEE Access, 2023, 12: 534-551. [44] HE X L, WANG T, YANG W K. Research on retinal vessel segmentation algorithm based on a modified U-shaped network[J]. Applied Sciences, 2024, 14(1): 465. [45] NI J J, SUN H Z, XU J X, et al. A feature aggregation and feature fusion network for retinal vessel segmentation[J]. Biomedical Signal Processing and Control, 2023, 85: 104829. [46] RYU J, REHMAN M U, NIZAMI I F, et al. SegR-Net: a deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107132. [47] HE Z X, LI X X, LV N Z, et al. Retinal vascular segmentation network based on multi-scale adaptive feature fusion and dual-path upsampling[J]. IEEE Access, 2024, 12: 48057-48067. [48] YANG Q, MA B Q, CUI H, et al. AMF-NET: attention-aware multi-scale fusion network for retinal vessel segmentation[C]//Proceedings of the 2021 43rd Annual Intternational Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2021: 3277-3280. [49] HUANG H, SHANG Z H, YU C H. FRD-Net: a full-resolution dilated convolution network for retinal vessel segmentation[J]. Biomedical Optics Express, 2024, 15(5): 3344-3365. [50] YE Y W, PAN C W, WU Y C, et al. MFI-Net: multiscale feature interaction network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(9): 4551-4562. [51] LIU M T, WANG Y Y, WANG L, et al. IMFF-Net: an integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images[J]. Biomedical Signal Processing and Control, 2024, 91: 105980. [52] 顾茂华, 吴云. 改进的大核卷积U-Net视网膜血管分割方法[J]. 计算机工程与设计, 2024, 45(5): 1541-1548. GU M H, WU Y. Improved method of large kernel convolution U-Net for retinal vessel segmentation[J]. Computer Engineering and Design, 2024, 45(5): 1541-1548. [53] AL-FAHSI R D H, AQTHOBIRROBBANY A, ARDIYANTO I, et al. MSGNet: modified MobileNet-ShuffleNet-GhostNet network for lightweight retinal vessel segmentation[C]//Proceedings of the 2023 10th International Conference on Information Technology, Computer, and Electrical Engineering. Piscataway: IEEE, 2023: 94-99. [54] YOU Z Y, YU H P, XIAO Z H, et al. CAS-UNet: a retinal segmentation method based on attention[J]. Electronics, 2023, 12(15): 3359. [55] SU H X, GAO L, LU Y C, et al. Attention-guided cascaded network with pixel-importance-balance loss for retinal vessel segmentation[J]. Frontiers in Cell and Developmental Biology, 2023, 11: 1196191. [56] DONG F F, WU D Y, GUO C Y, et al. CRAUNet: a cascaded residual attention U-Net for retinal vessel segmentation[J]. Computers in Biology and Medicine, 2022, 147: 105651. [57] HUANG Z, SUN M, LIU Y X, et al. CSAUNet: a cascade self-attention U-shaped network for precise fundus vessel segmentation[J]. Biomedical Signal Processing and Control, 2022, 75: 103613. [58] WU R H, TAO C, CHEN H Y, et al. Retinal vascular segmentation network with connectivity guidance[C]//Procee-dings of the 2023 IEEE Smart World Congress. Piscataway: IEEE, 2023: 1-6. [59] YANG Y, WAN W G, HUANG S Y, et al. RADCU-Net: residual attention and dual-supervision cascaded U-Net for retinal blood vessel segmentation[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(5): 1605-1620. [60] SHAO H C, CHEN C Y, CHANG M H, et al. Retina-TransNet: a gradient-guided few-shot retinal vessel segmentation net[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(10): 4902-4913. [61] QU Z W, ZHUO L, CAO J, et al. TP-Net: two-path network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(4): 1979-1990. [62] LI J Y, GAO G, YANG L, et al. DPF-Net: a dual-path progressive fusion network for retinal vessel segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2517817. [63] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680. [64] GUO X Y, CHEN C, LU Y Y, et al. Retinal vessel segmentation combined with generative adversarial networks and dense U-Net[J]. IEEE Access, 2020, 8: 194551-194560. [65] WU C, ZOU Y X, YANG Z. U-GAN: generative adversarial networks with U-Net for retinal vessel segmentation[C]//Proceedings of the 2019 14th International Conference on Computer Science & Education. Piscataway: IEEE, 2019: 642-646. [66] YUE C, YE M Q, WANG P P, et al. SRV-GAN: a generative adversarial network for segmenting retinal vessels[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 9948-9965. [67] VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [68] CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of the 17th European Conference on Computer Vision Workshops. Cham: Springer, 2022: 205-218. [69] LI A R, SUN M Z, WANG Z S. TD Swin-UNet: texture-driven Swin-UNet with enhanced boundary-wise perception for retinal vessel segmentation[J]. Bioengineering, 2024, 11(5): 488. [70] ZHANG H Y, NI W H, LUO Y, et al. TUnet-LBF: retinal fundus image fine segmentation model based on transformer Unet network and LBF[J]. Computers in Biology and Medicine, 2023, 159: 106937. [71] 梁礼明, 卢宝贺, 龙鹏威, 等. 自适应特征融合级联Transformer视网膜血管分割算法[J]. 光电工程, 2023, 50(10): 42-54. LIANG L M, LU B H, LONG P W, et al. Adaptive feature fusion cascade transformer retinal vessel segmentation algorithm[J]. Opto-Electronic Engineering, 2023, 50(10): 42-54. [72] ZHANG Y S, CHUNG A C S. Retinal vessel segmentation by a transformer-U-net hybrid model with dual-path decoder[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(9): 5347-5359. [73] CHEN D, YANG W Z, WANG L J, et al. PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation[J]. PLoS One, 2022, 17(1): e0262689. [74] SHI Z D, LI Y, ZOU H, et al. TCU-Net: transformer embedded in convolutional U-shaped network for retinal vessel segmentation[J]. Sensors, 2023, 23(10): 4897. [75] JIANG Y, LIANG J, CHENG T T, et al. MTPA_Unet: multi-scale transformer-position attention retinal vessel segmentation network joint transformer and CNN[J]. Sensors, 2022, 22(12): 4592. [76] GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces[EB/OL]. [2024-11-16]. https://arxiv.org/abs/2312.00752. [77] LIU T Y, ZHANG Z Q, FAN G J, et al. MambaVesselNet: a novel approach to blood vessel segmentation based on state-space models[J]. IEEE Journal of Biomedical and Health Informatics, 2025, 29(3): 2034-2047. [78] RUAN J C, LI J C, XIANG S C. VM-UNet: vision Mamba UNet for medical image segmentation[EB/OL]. [2024-11-18]. https://arxiv.org/abs/2402.02491. [79] MA J, LI F F, WANG B. U-Mamba: enhancing long-range dependency for biomedical image segmentation[EB/OL]. [2024-11-18]. https://arxiv.org/abs/2401.04722. [80] WANG Z Y, ZHENG J Q, ZHANG Y C, et al. Mamba-Unet: Unet-like pure visual Mamba for medical image segmentation[EB/OL]. [2024-11-20]. https://arxiv.org/abs/2402.05079. [81] 彭圆圆, 黎浩洋, 李文, 等. LTDA-Mamba: 基于CNN-Mamba混合网络的视网膜血管分割算法[J]. 光学学报, 2025, 45(7): 163-174. PENG Y Y, LI H Y, LI W, et al. LTDA-mamba: retinal vessel segmentation based on a hybrid CNN-Mamba network[J]. Acta Optica Sinica, 2025, 45(7): 163-174. |
| [1] | 魏宗月, 仇大伟, 刘静, 李振江, 常少华. 深度学习在上肢骨折诊断中的研究进展[J]. 计算机科学与探索, 2025, 19(9): 2341-2362. |
| [2] | 化春键, 姚烨涛, 蒋毅, 俞建峰, 陈莹. 特征增强和渐进式解码的RGB-D显著性检测[J]. 计算机科学与探索, 2025, 19(9): 2419-2429. |
| [3] | 杨彬, 马廷淮, 黄学坚, 王宇博, 王朝明, 赵博文, 于信. 基于时空特征融合与序列重构的时间序列异常检测[J]. 计算机科学与探索, 2025, 19(9): 2384-2398. |
| [4] | 刘晓佳, 陈泓妤, 于德新, 陈云结, 周宇琴. 面向自动驾驶汽车长短时特性的轨迹预测综述[J]. 计算机科学与探索, 2025, 19(9): 2363-2383. |
| [5] | 董甲东, 桑飞虎, 郭庆虎, 陈琳, 郑春香. 基于深度学习的目标检测算法轻量化研究综述[J]. 计算机科学与探索, 2025, 19(8): 2057-2084. |
| [6] | 洪维, 耿沛霖, 王弘宇, 张雪芹, 顾春华. 结合图像显著性区域的局部动态干净标签后门攻击[J]. 计算机科学与探索, 2025, 19(8): 2229-2240. |
| [7] | 张亦菲, 李艳玲, 葛凤培. 基于图深度学习的司法判决预测综述[J]. 计算机科学与探索, 2025, 19(8): 2024-2042. |
| [8] | 郑德生, 田野, 柯武平, 李晓瑜, 殷浩, 王聪. SBA:基于球几何性质的黑盒攻击方法[J]. 计算机科学与探索, 2025, 19(8): 2188-2202. |
| [9] | 闵锋, 刘宇卓, 刘煜晖, 刘彪. 基于时域频域混合特征的多变量时序预测模型[J]. 计算机科学与探索, 2025, 19(8): 2099-2109. |
| [10] | 周开军, 廖婷, 谭平, 史长发. 图像压缩技术研究综述[J]. 计算机科学与探索, 2025, 19(7): 1699-1728. |
| [11] | 许光远, 张亚强, 史宏志. 面向大规模DNN训练场景的容错技术综述[J]. 计算机科学与探索, 2025, 19(7): 1771-1788. |
| [12] | 陈旭, 张其, 王叔洋, 景永俊. 自适应积空间离散动态图链接预测模型[J]. 计算机科学与探索, 2025, 19(7): 1820-1831. |
| [13] | 吕伏, 郑禹, 齐光尧, 李浩然. 极坐标编解码的轻量化SAR图像舰船斜框检测算法[J]. 计算机科学与探索, 2025, 19(6): 1564-1579. |
| [14] | 周楠, 董永权, 闫林克, 金家永, 贺步贵. 融合学生知识状态与混沌萤火虫算法的习题推荐研究[J]. 计算机科学与探索, 2025, 19(6): 1620-1631. |
| [15] | 朱佳音, 李杨, 李明, 马金刚. 深度学习在宫颈细胞分割中的应用综述[J]. 计算机科学与探索, 2025, 19(6): 1476-1493. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||