计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (11): 2935-2949.DOI: 10.3778/j.issn.1673-9418.2412031

• 前沿·综述 • 上一篇    下一篇

U-Net及其变体在视网膜血管自动分割中的应用研究

刘艳艳,董彦如,张凯,王晓燕,王旭   

  1. 1. 山东中医药大学 医学信息工程学院,济南 250355
    2. 山东省第二人民医院 眼科,济南 250023
  • 出版日期:2025-11-01 发布日期:2025-10-30

Research on Application of U-Net and Its Variants in Automatic Segmentation of Retinal Vessels

LIU Yanyan, DONG Yanru, ZHANG Kai, WANG Xiaoyan, WANG Xu   

  1. 1. School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
    2. Department of Ophthalmology, Shandong Second Provincial General Hospital, Jinan 250023, China
  • Online:2025-11-01 Published:2025-10-30

摘要: 视网膜血管分割研究旨在促进眼底疾病的早期诊断及病变分析,为医生评估患者眼部健康状况提供重要依据。深度学习技术的迅猛发展为视网膜血管图像分割带来了新方法和分割性能的新突破,U-Net以出色的性能表现成为该领域的主流分割模型。详细整理了近年来U-Net及其改进模型在视网膜血管分割领域的应用进展,在介绍视网膜血管分割常用数据集与评价指标的基础上,概述U-Net模型及其主要结构改进策略。将U-Net变体划分为单网络模型与多网络模型,并从单网络模型中的注意力机制、残差结构、多尺度特征模块、卷积模块,以及多网络模型中的级联U-Net、双路径U-Net、生成对抗网络的融合、Transformer与Mamba模型的融入等角度对U-Net模型及其变体的改进进行了详细梳理,归纳对比分析了各研究在模型结构、特征提取、性能优化等方面的改进与缺陷,以及在公开数据集上的实验结果,并讨论了该领域目前存在的挑战与未来展望。

关键词: 视网膜血管分割, U-Net, 深度学习, 图像处理

Abstract: Research on retinal vessel segmentation aims to facilitate the early diagnosis and pathological analysis of fundus diseases, providing crucial support for doctors to assess patients?? ocular health. The rapid advancement of deep learning technologies has introduced novel approaches and breakthroughs in the segmentation performance of retinal vessel images. Among these, U-Net has emerged as a mainstream segmentation model in this field due to its outstanding performance. This paper comprehensively reviews recent progress in the application of U-Net and its improved models in retinal vessel segmentation. It firstly introduces commonly used datasets and evaluation metrics for retinal vessel segmentation, then gives an overview of the U-Net model and its primary structural enhancement strategies. Furthermore, the paper categorizes U-Net variants into single-network models and multi-network models. From the perspective of single-network models, it elaborates on improvements such as attention mechanisms, residual structures, multi-scale feature modules, and convolutional modules. For multi-network models, it examines enhancements like cascaded U-Net, dual-path U-Net, the integration of generative adversarial networks (GANs), and the incorporation of Transformer and Mamba models. A comparative analysis is conducted to summarize the improvements and limitations of various studies in terms of model architecture, feature extraction, performance optimization, and experimental results on public datasets. Based on this analysis, the paper discusses current challenges and future prospects in the field.

Key words: retinal vessel segmentation, U-Net, deep learning, image processing