[1] DURAIVELU K. Digital transformation in manufacturing industry-a comprehensive insight[J]. Materials Today: Proceed- ings, 2022, 68: 1825-1829.
[2] CHITALOV D I. Development of an application with a graphical user interface (GUI) to compute in parallel in the OpenFOAM environment[J]. Journal of Physics: Conference Series, 2019, 1399(3): 033001.
[3] ADAK R. OpenFOAM GUI development using Python on Blender[R]. Mumbai: IIT Bombay, 2021.
[4] WANG J X, CHEN Y X. A review on code generation with LLMs: application and evaluation[C]//Proceedings of the 2023 IEEE International Conference on Medical Artificial Intelligence. Piscataway: IEEE, 2024: 284-289.
[5] 顾斌, 于波, 董晓刚, 等. 程序智能合成技术研究进展[J]. 软件学报, 2021, 32(5): 1373-1384.
GU B, YU B, DONG X G, et al. Intelligent program synthesis techniques: literature review[J]. Journal of Software, 2021, 32(5): 1373-1384.
[6] 杨泽洲, 陈思榕, 高翠芸, 等. 基于深度学习的代码生成方法研究进展[J]. 软件学报, 2024, 35(2): 604-628.
YANG Z Z, CHEN S R, GAO C Y, et al. Deep learning based code generation methods: literature review[J]. Journal of Software, 2024, 35(2): 604-628.
[7] WANG Y, WANG W S, JOTY S, et al. CodeT5: identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[EB/OL]. [2025-08-10]. https:// arxiv.org/abs/2109.00859.
[8] NIJKAMP E, PANG B, HAYASHI H, et al. CodeGen: an open large language model for code with multi-turn program synthesis[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2203.13474.
[9] MO W J, LIU Q, WEN X F, et al. RedCoder: automated multi-turn red teaming for code LLMs[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2507.22063.
[10] DONG Y H, JIANG X, QIAN J R, et al. A survey on code generation with LLM-based agents[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2508.00083.
[11] FENG Z Y, GUO D Y, TANG D Y, et al. CodeBERT: a pre-trained model for programming and natural languages[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2002.08155.
[12] LI Y J, CHOI D, CHUNG J, et al. Competition-level code generation with AlphaCode[J]. Science, 2022, 378(6624): 1092-1097.
[13] FRIED D, AGHAJANYAN A, LIN J, et al. InCoder: a generative model for code infilling and synthesis[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2204.05999.
[14] LI R, ALLAL L B, ZI Y T, et al. StarCoder: may the source be with you![EB/OL]. [2025-08-10]. https://arxiv.org/abs/2305. 06161.
[15] BELTRAMELLI T. pix2code: generating code from a graphical user interface screenshot[C]//Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York: ACM, 2018: 1-6.
[16] TENG Z W, FU Q C, WHITE J, et al. Sketch2Vis: generating data visualizations from hand-drawn sketches with deep learning[C]//Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2022: 853-858.
[17] GUI Y, WAN Y, LI Z, et al. UICopilot: automating UI synthesis via hierarchical code generation from webpage designs [C]//Proceedings of the ACM on Web Conference 2025. New York: ACM, 2025: 1846-1855.
[18] XU Y, BO L L, SUN X B, et al. image2emmet: automatic code generation from web user interface image[J]. Journal of Software: Evolution and Process, 2021, 33(8): e2369.
[19] BALDWIN T, BHAT M, DENG M K, et al. Web2Code: a large-scale webpage-to-code dataset and evaluation framework for multimodal LLMs[C]//Advances in Neural Information Processing Systems 37, 2024: 112134-112157.
[20] HURST A, LERER A, GOUCHER A P, et al. GPT-4o system card[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2410. 21276.
[21] DeepSeek-AI, GUO D Y, YANG D J, et al. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2501.12948.
[22] ZHANG K C, LI J, LI G, et al. CodeAgent: enhancing code generation with tool-integrated agent systems for real-world repo-level coding challenges[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2401.07339.
[23] JIMENEZ C, LIERET K, NARASIMHAN K, et al. SWE-agent: agent-computer interfaces enable automated software engineering[C]//Advances in Neural Information Processing Systems 37, 2024: 50528-50652.
[24] WANG X Y, CHEN Y Y, YUAN L F, et al. Executable code actions elicit better LLM agents[C]//Proceedings of the 41st International Conference on Machine Learning. New York: ACM, 2024: 50208-50232.
[25] YUE L, SOMASEKHARAN N, CAO Y D, et al. Foam-Agent: towards automated intelligent CFD workflows[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2505.04997.
[26] SOMAN K, ROSE P W, MORRIS J H, et al. Biomedical knowledge graph-optimized prompt generation for large language models[J]. Bioinformatics, 2024, 40(9): btae560.
[27] GUO D Y, REN S, LU S, et al. GraphCodeBERT: pre-training code representations with data flow[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2009.08366.
[28] BALTRU?AITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443.
[29] PENG C Y, XIA F, NASERIPARSA M, et al. Knowledge graphs: opportunities and challenges[J]. Artificial Intelligence Review, 2023, 56(11): 13071-13102.
[30] EHRLINGER L, WOSS W. Towards a definition of knowledge graphs[C]//Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems and the 1st International Workshop on Semantic Change & Evolving Semantics co-located with the 12th International Conference on Semantic Systems, 2016.
[31] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1877-1901.
[32] LIU P F, YUAN W Z, FU J L, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35.
[33] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2005.11401.
[34] DORRI A, KANHERE S S, JURDAK R. Multi-agent systems: a survey[J]. IEEE Access, 2018, 6: 28573-28593.
[35] LI X Y, WANG S, ZENG S Q, et al. A survey on LLM-based multi-agent systems: workflow, infrastructure, and challenges[J]. Vicinagearth, 2024, 1(1): 9.
[36] HE J D, TREUDE C, LO D. LLM-based multi-agent systems for software engineering: literature review, vision, and the road ahead[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(5): 1-30.
[37] XI Z H, CHEN W X, GUO X, et al. The rise and potential of large language model based agents: a survey[J]. Science China Information Sciences, 2025, 68(2): 121101.
[38] OMAN P, HAGEMEISTER J. Metrics for assessing a software system’s maintainability[C]//Proceedings of the Conference on Software Maintenance. Piscataway: IEEE, 2002: 337-344.
[39] LISO A. Software maintainability metrics model: an improvement in the Coleman-Oman model[J]. Crosstalk, 2001: 15-17.
[40] BUSE R P L, WEIMER W R. A metric for software readability[C]//Proceedings of the 2008 International Symposium on Software Testing and Analysis. New York: ACM, 2008: 121-130.
[41] BUSE R P L, WEIMER W R. Learning a metric for code readability[J]. IEEE Transactions on Software Engineering, 2010, 36(4): 546-558.
[42] Systems and software engineering - systems and software quality requirements and evaluation (SQuaRE) -system and software quality models: ISO/IEC 25010[S]. ISO, 2011. |