[1] 王颖洁, 张程烨, 白凤波, 等. 中文命名实体识别研究综述[J]. 计算机科学与探索, 2023, 17(2): 324-341.
WANG Y J, ZHANG C Y, BAI F B, et al. Review of Chinese named entity recognition research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341.
[2] LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842.
[3] 赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304.
ZHAO S, LUO R, CAI Z P. Survey of Chinese named entity recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 296-304.
[4] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 1105-1116.
[5] YE H B, ZHANG N Y, CHEN H, et al. Generative know-ledge graph construction: a review[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 1-17.
[6] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734.
[7] CHEN Y C, GAN Z, CHENG Y, et al. Distilling knowledge learned in BERT for text generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7893-7905.
[8] GUPTA M, BENDERSKY M. Information retrieval with verbose queries[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 1121-1124.
[9] SUN P, YANG X Z, ZHAO X B, et al. An overview of named entity recognition[C]//Proceedings of the 2018 International Conference on Asian Language Processing. Piscataway: IEEE, 2018: 273-278.
[10] LEE L H, LU C H, LIN T M. NCUEE-NLP at SemEval-2022 task 11: Chinese named entity recognition using the BERT-BiLSTM-CRF model[C]//Proceedings of the 16th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2022: 1597-1602.
[11] MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]//Proceedings of the 7th Conference on Natural Language Learning. Stroudsburg: ACL, 2003: 188-191.
[12] LUO Y, XIAO F, ZHAO H. Hierarchical contextualized representation for named entity recognition[J]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020,34(5): 8441-8448.
[13] ZHENG C M, CAI Y, XU J Y, et al. A boundary-aware neural model for nested named entity recognition[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 357-366.
[14] 尹成龙, 陈爱国. 融合多重嵌入的中文命名实体识别[J]. 中文信息学报, 2023, 37(4): 63-71.
YIN C L, CHEN A G. Multi-embeddings for Chinese named entity recognition[J]. Journal of Chinese Information Processing, 2023, 37(4): 63-71.
[15] 罗辉, 卢玲. 面向中文命名实体识别的中文字符表示方法[J]. 小型微型计算机系统, 2023, 44(7): 1434-1440.
LUO H, LU L. Character embedding method for Chinese named entity recognition[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1434-1440.
[16] ZHU Y, WANG G. CAN-NER: convolutional attention network for Chinese named entity recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 3384-3393.
[17] GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 1040-1050.
[18] WANG T B, HUANG R Y, HU N, et al. Chinese named entity recognition method based on dictionary semantic know-ledge enhancement[J]. IEICE Transactions on Information and Systems, 2023, 106(5): 1010-1017.
[19] GUO Y, FENG S X, LIU F J, et al. Enhanced Chinese domain named entity recognition: an approach with lexicon boundary and frequency weight features[J]. Applied Sciences, 2024, 14(1): 354.
[20] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[21] LUO R, XU J, ZHANG Y, et al. PKUSEG: a toolkit for multi-domain Chinese word segmentation[EB/OL]. [2024-08-19]. https://arxiv.org/abs/1906.11455.
[22] ZHANG S, ZHENG D, XU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg: ACL, 2015: 73-78.
[23] 叶瀚, 孙海春, 李欣. 融合GCNN与GRU的异常实体识别方法[J]. 计算机科学与探索, 2023, 17(8): 1938-1948.
YE H, SUN H C, LI X. Entity anomaly recognition method based on GCNN and GRU[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1938-1948.
[24] LI J T, MENG K. MFE-NER: multi-feature fusion embedding for Chinese named entity recognition[EB/OL]. [2024-08-19]. https://arxiv.org/abs/2109.07877. |